摘要
In this work,the effects of Ce addition(0,0.1 wt%,0.3 wt%,0.5 wt%and 0.7 wt%)on the evolution of microstructure and mechanical properties of 6111 Al alloy and strengthening mechanism of 6111 Al-Ce alloy were systematically investigated by a polarizing microscope,a scanning electronic microscope,an energy dispersive spectroscope and a high-resolution transmission electron microscope.The results indicate that with 0.3 wt%Ce addition,theα-Al grains show the equiaxed crystal morphology with the average size decreasing from 137 to 57μm and numerous small AlCeSi phases with lump-like or platelike morphology are distributed closely along the grain boundary.The peak yield strength,ultimate tensile strength and elongation of 6111 Al-Ce alloy reach to 279 MPa,316 MPa and 12.1%,respectively,which is attributed to the grain refinement strengthening and the formation of nanosized Al11Ce3 precipitates.Eventually,this investigation gives us instructive suggestion to prepare the new kind of aluminum alloy with high strength and high ductility.
基金
Project supported by the National Natural Science Foundation of China(U1664254,51701085,51801074,52071158)
the Natural Science Foundation for Young of Jiangsu Province,China(BK20160516,BK20170543)
the Six Talents Peak Project of Jiangsu Province(2018-XCL-202)。