期刊文献+

CEV模型下考虑风险相关性的保险组合时间一致性投资策略 被引量:1

Time-Consistent Investment Policy for Insurance Portfolio with Dependent Risk in the CEV Model
下载PDF
导出
摘要 在均值方差准则下研究了保险组合的时间一致投资策略。假定风险资产价格服从不变弹性方差(CEV)模型,保险盈余过程为扩散近似模型。考虑到金融市场和保险市场的不完全风险相关性,假设驱动CEV模型的布朗运动和驱动盈余过程的布朗运动存在部分相关。通过求解问题对应的扩展哈密顿-雅克比-贝尔曼(HJB)方程组,得到了值函数和最优时间一致投资策略的显式解。结果表明,考虑风险相关性后均值方差保险组合选择问题等价于一个普通组合选择问题加上一个保险组合的最优时间一致对冲问题;忽视风险相关性将对风险厌恶型投资者的福利造成显著的损失。 Thispaper investigatesthe time-consistent investmentpolicy for insuranceportfoliowiththe mean-variance criterion.The price process of the risky asset follows the constant elasticity of variance(CEV)model,and the surplus process is described by a diffusion approximation model.Moreover,considering the imperfect risk correlation between the financial market and the insurance sector,it is assumed that the Brownian motion driving CEV model is imperfectly correlated with the Brownian motion driving earnings process.By solving the associated extended Hamilton-Jacobi-Bellman(HJB)equations,the value functions and the optimal time-consistent investment policy in explicit form are obtained.It is found that the mean-variance insurance portfolio choice problem is equivalent to a mean-variance common portfolio choice problem and an optimal time-consistent hedging problem for insurance portfolio after introducing the risk dependence.The risk-averse investor will suffer significant economic cost it ignoring the risk dependence.
作者 刘小涛 刘海龙 LIU Xiaotao;LIU Hailong(Antai College of Economics and Management,Shanghai Jiao Tong University,Shanghai 200030,China)
出处 《系统管理学报》 CSSCI CSCD 北大核心 2022年第1期53-65,共13页 Journal of Systems & Management
基金 国家自然科学基金资助项目(71873088)。
关键词 均值方差 最优对冲 时间一致 CEV模型 扩展HJB方程组 mean-variance optimal hedging time-consistent constant elasticity of variance(CEV)model extended Hamilton-Jacobi-Bellman system of equations
  • 相关文献

参考文献7

二级参考文献46

  • 1Bai LiHua,Guo JunYi.Optimal dynamic excess-of-loss reinsurance and multidimensional portfolio selection[J].Science China Mathematics,2010,53(7):1784-1801. 被引量:14
  • 2肖建武,尹少华,秦成林.养老基金投资组合的常方差弹性(CEV)模型和解析决策[J].应用数学和力学,2006,27(11):1312-1318. 被引量:16
  • 3秦洪元,郑振龙.CEV模型下有交易成本的期权定价[J].南方经济,2007,36(9):38-45. 被引量:4
  • 4Browne S. Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin[J]. Mathematics of Operations Research, 1995, 20: 937-958.
  • 5Hipp C, Taskar M. Stochastic control for optimal new business[J]. Insurance: Mathematics and Economics, 2000, 26:185- 192.
  • 6Hipp C, Plum M. Optimal investment for insurers[J]. Insurance: Mathematics and Economics, 2000, 27: 215-228.
  • 7Liu C S, Yang H. Optimal investment for an insurer to minimize its probalitity of ruin[J]. North American Actuarial Journal, 2004, 8: 11-31.
  • 8Hipp C, Schmidli H. Asymptotics of ruin probabilities for controlled risk processes in the small claims case[J]. Scandinavian Actuarial Journal, 2004, 5: 321-335.
  • 9Yang H, Zhang L. Optimal investment for insurer with jump-diffusion risk process[J]. Insurance: Mathematics and Economics, 2005, 37:615- 634.
  • 10Wang N. Optimal investment for an insurer with exponential utility preference[J]. Insurance: Mathematics and Economics, 2007, 40: 77-84.

共引文献24

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部