期刊文献+

自动调优技术在智慧校园数据库的应用与优化 被引量:2

Application and Optimization of Automatic Tuning Technology in Smart Campus Database
下载PDF
导出
摘要 文章分析了智慧校园数据平台建设过程中应用MPP架构数据库出现的主要问题,然后提出将基于机器学习的数据库自动调优技术OtterTune应用到其中,并针对MPP架构数据库负载刻画不够准确的问题,提出一种新的算法与解决思路,最后对新的算法进行了性能分析,结果显示调优效果提升。 This paper analyzes the main problems in the MPP database applied in the construction of smart campus data platform, then proposes to apply OtterTune which is automatic database tuning technology based on machine learning to the tuning process, and puts forward a new algorithm and solution to the problem that the load characterization of MPP architecture database is not accurate enough. Finally, the performance of the new algorithm is analyzed. The result shows that the tuning effect is promoted.
作者 田浩 TIAN Hao(Liaoning Finance Vocational College,Shenyang,Liaoning,China 110122)
出处 《湖南邮电职业技术学院学报》 2021年第4期26-29,共4页 Journal of Hunan Post and Telecommunication College
基金 辽宁金融职业学院2021年度校级课题“基于大数据技术的决策型智慧校园的设计研究”(课题编号:LJXJ202101)。
关键词 智慧校园 MPP架构数据库 数据库自动调优 自动参数调优 多节点负载刻画 smart campus MPP database automatic database tuning automatic parameter tuning multi-node load characterization
  • 相关文献

参考文献6

二级参考文献44

  • 1余正涛,樊孝忠,郭剑毅,耿增民.基于潜在语义分析的汉语问答系统答案提取[J].计算机学报,2006,29(10):1889-1893. 被引量:44
  • 2张云,冯博琴,麻首强,刘连梦.蚁群-遗传融合的文本聚类算法[J].西安交通大学学报,2007,41(10):1146-1150. 被引量:15
  • 3王玲,薄列峰,焦李成.密度敏感的半监督谱聚类[J].软件学报,2007,18(10):2412-2422. 被引量:94
  • 4孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1074
  • 5CHEN X, LIU W, QIU H, et al. APSCAN:a parameter free algorithm for clustering[ J]. Pattern Recognition Let- ters, 2011, 32(7) :973-986.
  • 6DHILLON I S, MODHA D S. Concept decompositions for large sparse text data using clustering [ J ]. Machine learning, 2001, 42(1-2) : 143-175.
  • 7MURTAGH F, CONTRERAS P. Algorithms for hierar- chical clustering : an overview [ J ]. Wiley Interdisciplinary Reviews : Data Mining and Knowledge Discovery, 2012, 2 ( 1 ) : 86-97.
  • 8TRAN T N, DRAB K, DASZYKOWSKI M. Revised DBSCAN algorithm to cluster data with dense adjacent clusters [ J ]. Chemometrics and Intelligent Laboratory Systems, 2013, 120(2) :92-96.
  • 9JIANG H, LI J, YI S, et al. A new hybrid method based on partitioning-based DBSCAN and ant clustering [ J ]. Expert Systems with Applications, 2011, 38 ( 8 ) : 9373- 9381.
  • 10SZABO A, PRIOR A K F, DE CASTRO L N. The be- havior of particles in the Particle Swarm Clustering algo- rithm [ C ]//Proceedings of Fuzzy Systems ( FUZZ ), 2010 IEEE International Conference on. Barcelona, Spain : IEEE, 2010 : 1-7.

共引文献27

同被引文献10

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部