摘要
本文证明如下定理:设f为C^(n)上的一个非常数整函数,L_(D)(f)=_(ak)D^(k)f+a_(k-1)D^(k-1)f+···+a_(1)Df+a_(0)f,其中a_(j)∈C,a_(k)≠0,D^(j) f是f的j阶全导数(j=1,2,···,k).若f与L_(D)(f)有两个有穷的CM分担值,则f=L_(D)(f).
In this paper,the author proves the following theorem:If a nonconstant entire function f and its differential polynomial L_(D)(f)share two distinct CM values,then f≡L_(D)(f),where L_(D)(f)=_(ak)D^(k)f+a_(k-1)D^(k-1)f+···+a_(1)Df+a_(0)f,with a_(j)∈C,a_(k)≠0,and D^(j) f is the j-th order total derivative of f,j=1,2,···,k.
作者
杨刘
YANG Liu(School of Mathematics and Physics,Anhui University of Technology,Maanshan 243032,Anhui,China)
出处
《数学年刊(A辑)》
CSCD
北大核心
2021年第4期349-358,共10页
Chinese Annals of Mathematics
关键词
整函数
全导数
分担值
唯一性
Entire function
Total derivative
Sharing value
Uniqueness theorem