期刊文献+

基于BP神经网络的输电铁塔加固构件极限承载力预测模型 被引量:1

Prediction Model of Ultimate Bearing Capacity of Reinforcement Components of Transmission Tower Based on BP Neural Network
下载PDF
导出
摘要 针对既有输电铁塔的加固需求,采用BP神经网络算法,对输电铁塔双角钢组合截面构件的极限承载力进行了预测分析,并与行业标准进行对比。结果表明,基于BP神经网络的模型预测精度高于行业标准的预测结果,可较准确预测输电铁塔加固构件的极限承载力。 In allusion to the reinforcement demand of existing transmission tower,the BP neural network algorithm is adopted to predict and analyze the ultimate bearing capacity of the double-angle steel combined cross-section components of the transmission tower,and compare with the industry standard.The results show that the prediction precision of the model based on BP neural network is higher than that of the industry standard,and the ultimate bearing capacity of the reinforcement components of transmission tower can be predicted accurately.
作者 辛振科 魏欢欢 XIN Zhenke;WEI Huanhuan(Gansu Institute of Water and Hydropower Engineering Investigation Design and Research Co.,Ltd.,Lanzhou 730000,China;Xi’an University of Technology,Xi'an 710048,China;Yangling Vocational&Technical College,Xianyang 712100,China)
出处 《山东电力高等专科学校学报》 2021年第6期6-9,13,共5页 Journal of Shandong Electric Power College
关键词 输电铁塔 加固 极限承载力 BP神经网络 双角钢 组合截面 transmission tower reinforcement ultimate bearing capacity BP neural network double-angle steel combined cross-section
  • 相关文献

参考文献10

二级参考文献86

共引文献200

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部