期刊文献+

复发事件数据在含治愈个体的半参数比率模型下的经验似然推断

Semiparametric Rate Models for Recurrent Event Data with Cure Rate via Empirical Likelihood
下载PDF
导出
摘要 随着医学的发展,某些无法治愈的疾病能够被治愈,并且在一段时间内不复发,从而导致在复发事件数据中出现治愈个体。本文针对复发事件数据基于含治愈个体的半参数比率模型提出一种经验似然方法,建立经验对数似然比函数,并证明Wilk’s定理。通过数值模拟将所提出的经验似然方法与正态逼近方法进行比较,得到在样本量较小时,所提出的经验似然方法解决了正态逼近方法覆盖率不足的问题。最后将本文方法应用于一组膀胱癌数据的分析,得到的结果与实际相符。 With the continuous development of medical science,recently some diseases that have been considered impossible to be cured before,are found to be possibly cured and will not recur after a certain period.This paper proposes an empirical likelihood method based on semiparametric rate model for recurrent event data with cure rate.An empirical likelihood ratio statistic is introduced for the regression parameters and the Wilk’s theorem is established.By comparing the proposed empirical likelihood method with normal approximation method when the sample size is small,simulation studies are given.Finally,this method is applied to a bladder cancer dataset.
作者 刘宇 周稳 李霓 LIU Yu;ZHOU Wen;LI Ni(School of Mathematics and Statistics,Hainan Normal University,Haikou Hainan 571158,China)
出处 《广西师范大学学报(自然科学版)》 CAS 北大核心 2022年第1期139-149,共11页 Journal of Guangxi Normal University:Natural Science Edition
基金 国家自然科学基金(11861030) 海南省自然科学基金高层次人才项目(2019RC176)。
关键词 半参数比率模型 治愈个体 Wilk’s定理 经验似然 semiparametric rate model cure rate Wilk’s theorem empirical likelihood
  • 相关文献

参考文献7

二级参考文献23

  • 1DAI JiaJia,SUN LiuQuan,YANG ZhenHai.A general additive-multiplicative rates model for recurrent event data[J].Science China Mathematics,2009,52(10):2257-2265. 被引量:5
  • 2He Qixiang,Zheng Ming.EMPIRICAL LIKELIHOOD-BASED INFERENCE IN LINEAR MODELS WITH INTERVAL CENSORED DATA[J].Applied Mathematics(A Journal of Chinese Universities),2005,20(3):338-346. 被引量:3
  • 3Cheng, S.C., Wei, L.J. Inferences for a semiparametric model with panel data. Biometrika., 85: 967—972 (2000).
  • 4Fan, J. Li, R.Z. New estimation and model selection precedures for semiparametric modeling in longitudinal data analysis. J. Am. Statist. Assoc., 99: 710—723 (2004).
  • 5Fan, J. Gijbels, I. Data-driven bandwidth selection in local polynomial fitting: variable bandwidth a nd spatial adaptation. J. R. Statist. Soc., B 57: 371—394 (1995).
  • 6Fan, J., Yao, Q. Efficient estimation of conditional variance functions in stochastic regression. Biometrika., 85: 645-660 (1998).
  • 7He, X., Zhu, Z.Y., Fung, W.K. Estimation in a semiparametric model for longitudinal data with unspecified dependence structure. Biometrika., 89: 579—590 (2002).
  • 8Hoeffding, W., Robbins, H. The central limit theorem for dependent random variables. Duke Mathematical Journal., 15: 773-780 (1948).
  • 9Hu, Z.H., Wang, N., Carroll, R.J. Profile-kernel versus backfitting in the partially linear models for longitudinal/clustered data. Biometrika., 91: 251-262 (2004).
  • 10Lin, D.Y., Ying, Z. Semiparametric and nonparametric regression analysis of longitudinal data (with discussion). J. Am. Statist. Assoc., 96: 103—126 (2001).

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部