摘要
分布式电源从属于不同运营部门,相互之间缺乏有效的信息交换,难以进行集中控制。文章针对可再生能源电网中由于新能源占比较高,易出现出力波动或出力不足,难以保障供能可靠性等问题,提出一种基于信息物理融合的可再生能源电网分布式能量控制模型。首先,为进一步提高可再生能源电网能量平衡控制能力,建立了可再生能源电网信息物理模型;然后,考虑可再生能源波动性对系统的干扰,建立一种自适应滑模观测器对可再生能源电网的扰动进行估计;最后,提出一种基于可再生能源电网的分布式协同控制器,并基于李雅普诺夫稳定性理论验证了该控制器的收敛性。仿真结果表明,文章所提出的控制方法可以提高可再生能源电网的能源利用率,增强系统的鲁棒性。
Distributed power sources belong to different operating departments,lack effective information exchange between each other,and it is difficult to carry out centralized control.Aiming at the problems of renewable energy grids,which account for a relatively high proportion of new energy sources,which are prone to output fluctuations or insufficient output,and it is difficult to ensure the reliability of energy supply,this paper proposes a distributed energy control model for renewable energy grids based on cyber-physical integration.First,in order to further improve the energy balance control capability of the renewable energy grid,a cyber-physical model of the renewable energy grid is established.Considering the disturbance of renewable energy volatility to the system,an adaptive sliding mode observer is established to estimate the disturbance of the renewable energy grid.On this basis,a distributed collaborative controller based on renewable energy grid is proposed,and the convergence of the controller is verified based on Lyapunov′s stability.The simulation results show that the control method proposed in the article can improve the energy efficiency of the renewable energy grid and enhance the robustness of the system.
作者
朱灵子
翟勇
唐建兴
范翔
姚瑶
Zhu Lingzi;Zhai Yong;Tang Jianxing;Fan Xiang;Yao Yao(Guizhou Power Grid Co.,Ltd.,Dispatching and Control Center,Guiyang 550000,China;Beijing Kedong Electric Power Control System Co.,Ltd.,Beijing 100192,China;School of Electrical Engineering,Guizhou University,Guiyang 550025,China)
出处
《可再生能源》
CAS
CSCD
北大核心
2022年第2期254-259,共6页
Renewable Energy Resources
基金
贵州电网有限责任公司科技项目(0665002019070305FS00009)。
关键词
分布式电源
可再生能源电网
信息物理
协同控制
distributed power
renewable energy grid
cyber physics
collaborative control