期刊文献+

神经网络技术在高铁站多联机空调节能控制中的应用 被引量:4

Application of Neural Network Technology in Energy-conservation Control of Multi-connected Air Conditioner in High-speed Railway Station
下载PDF
导出
摘要 本文基于神经网络技术设计空调控制软件系统,对传统人工控制模式和神经网络控制器进行对比研究.首先利用Energy Plus仿真软件建立真实高铁站建筑及其多联机空调系统模型,对该空调系统设置424种工况完成了一整年运行仿真,然后从百万条仿真数据中抽取PMV (predicted mean vote,预测平均投票)热舒适度和能耗优秀的数据训练神经网络控制器,最后用JavaEE技术开发了该高铁站空调控制软件原型系统并利用Energy Plus仿真数据以及机器学习预测模型模拟实现了空调动态控制.实验结果表明,在冬季和夏季典型工况条件下神经网络控制器比人工固定设置空调参数更加节能. In this study, air conditioning control software is designed with neural network technology, and the traditional manual control mode and neural network controller are compared. First, Energy Plus is used to build a real high-speed railway station building and its multi-connected air conditioning system, with 424 working conditions of the air conditioning system set up to complete the operation simulation for a whole year. Then the neural network controller is trained with data having excellent predicted mean vote(PMV)-based thermal comfort and energy consumption which are extracted from millions of simulation data. Finally, the prototype system of air conditioning control software for the highspeed railway station is developed with Java Enterprise Edition(JavaEE), and the dynamic control of air conditioners is realized by using Energy Plus simulation data and simulation with a machine learning prediction model. The simulation results based on this prototype software system show that the intelligent controller can reduce energy consumption in comparison with manual control based on fixed settings under typical working conditions in winter and summer.
作者 牛茜 蒋琴 王瑶 赵宏宇 陈彦如 NIU Qian;JIANG Qin;WANG Yao;ZHAO Hong-Yu;CHEN Yan-Ru(School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China;School of Economics and Management,Southwest Jiaotong University,Chengdu 610031,China)
出处 《计算机系统应用》 2022年第1期303-308,共6页 Computer Systems & Applications
基金 国家重点研发计划(2018YFC0705000)。
关键词 Energy Plus仿真 软件系统设计 节能 神经网络 Energy Plus simulation software system design energy conservation neural network
  • 相关文献

参考文献12

二级参考文献71

  • 1黄福华.零售企业物流绩效的评价与管理[J].民族论坛,2002(12):26-27. 被引量:10
  • 2刘大玮,刘瑞虹.基于WSE和消息队列的异步Web服务研究及实现[J].计算机工程,2007,33(8):127-129. 被引量:10
  • 3王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.126-131,147-148.
  • 4付勇.面向服务架构与应用[M].北京:清华大学出版社,2009.
  • 5Vivek P A, Abdul N, Nagpurwala Q H. Numerical Studies on the Effect of Cooling Vent Setting and Solar Radiation on Air Flow and Temperature Distribution in a Passenger Car [C ]. SAE Paper 2009 -28 -0048.
  • 6Han T Y, Chen K H, Khalighi B, et al. Assessment of Various Environmental Thermal Loads on Passenger Thermal Comfort [ C ]. SAE Paper 2010-01-120.
  • 7j'unichiro Hara, Katsuro Fujitani, Kunio Kuwahara. Computer Sim- ulation of Passenger Compartment Air Flow [ C ]. SAE Paper 881749.
  • 8Lee Sang-Joon, Yoon Jong-Hwan, Kim Ki-Won. Simultaneous Meas- urement of Temperature and Velocity Fields of Ventilation Flow in a Passenger Compartment[C]. SAE Paper 98292.
  • 9Yuji Ishihara, Junichiro Hara, Hideyuki Sakamoto. Determination of Flow Distribution in a Vehicle Interior Using a Visualization and Computation Techniques[C]. SAE Paper 910310.
  • 10Fanger P O. Thermal Comfort~ M]. Kopenhagen, Dannish Techni- cal Press, 1970.

共引文献69

同被引文献33

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部