期刊文献+

无人机增程式电推进系统双模糊能量管理策略仿真 被引量:5

Simulation on dual-fuzzy energy management strategy of UAV extended range electric propulsion system
原文传递
导出
摘要 为提高应用于无人机的增程式电推进系统能量利用效率,采用基于双层模糊控制的能量管理策略并使用遗传算法对控制参数进行优化,依据飞行动力学理论在仿真飞行工况中设置不同扰动,检验能量管理策略的抗飞行扰动效果。仿真结果表明:相比于基于多点逻辑门规则和比例积分微分PID(proportion integral differential)的能量管理策略,双模糊能量管理策略可使发动机运行平均燃油消耗率下降3.4%,整体燃油消耗量下降3.8%,电池使用量降低10.6%,发动机平均转速误差下降77.0%,面对突风扰动、复合扰动和连续紊流扰动时转速最大波动量分别降低71.4%、72.6%和46.7%。经过遗传算法优化后的双模糊能量管理策略相比优化前的控制参数,发动机平均转速误差下降6.6%,面对上述3种扰动时转速最大波动量分别降低12.8%、8.3%和39.4%。 In order to improve the energy utilization efficiency of the extended-range electric propulsion system applied to unmanned aerial vehicle(UAV)s,an energy management strategy based on double-layer fuzzy control was adopted and genetic algorithms were used to optimize the control parameters,and different disturbances were set in the simulated flight conditions according to the flight dynamics theory to test the anti-flight disturbance effect of the energy management strategy.The simulation results showed that compared with the energy management strategy based on multi-point logic gate rules and PID(proportion integral differential),the dual-fuzzy energy management strategy can reduce the average fuel consumption rate of the engine by 3.4%and the overall fuel consumption by 3.8%;the battery usage was reduced by 10.6%,the average engine speed error was reduced by 77.0%,and the maximum speed fluctuations in the face of sudden wind disturbance,compound disturbance and continuous turbulence disturbance were reduced by 71.4%,72.6%and 46.7%,respectively.Compared with the control parameters before optimization,the dual-fuzzy energy management strategy optimized by genetic algorithm reduced the average engine speed error by 6.6%,and reduced the maximum speed fluctuations by 12.8%,8.3%,and 39.4%,respectively,in the face of the above-mentioned three kinds of disturbances.
作者 胡春明 李诚 刘娜 宋玺娟 杜春媛 HU Chunming;LI Cheng;LIU Na;SONG Xijuan;DU Chunyuan(Internal Combustion Engine Research Institute,Tianjin University,Tianjin 300072,China;School of Mechanical Engineering,Tianjin University,Tianjin 300050,China)
出处 《航空动力学报》 EI CAS CSCD 北大核心 2021年第12期2652-2662,共11页 Journal of Aerospace Power
基金 国家自然科学基金面上项目(51476112)。
关键词 能量管理 模糊控制 增程式 电推进系统 无人机(UAV) energy management fuzzy control extended range electric propulsion system unmanned aerial vehicle(UAV)
  • 相关文献

参考文献5

二级参考文献55

  • 1刘斌,马晓平,王和平,周康生.小型电动无人机总体参数设计方法研究[J].西北工业大学学报,2005,23(3):396-400. 被引量:31
  • 2李国岫,张欣,宋建锋.并联式混合动力电动汽车动力总成控制器硬件在环仿真[J].中国公路学报,2006,19(1):108-112. 被引量:17
  • 3Jeremy F. Electric motor & power source selection for small aircraft propulsion[D].Indiana,US:Purdue University,2011.
  • 4Kolja S. Performance assessment of part-electric general aviation aircraft[D].Hamburg,Germany:Hamburg University,2006.
  • 5Hiserote R M. Analysis of hybrid-electric propulsion sys tem designs for small unmanned aircraft systems[AIAA 2010-6687][R].2010.
  • 6Rotramel T A. Optimization of hybrid-electric propulsion systems for small remotely-piloted aircraft[D].Hobson,US:Air Force Institute of Technology,2011.
  • 7Mark D M. Electric propulsion enabled advanced air vehicles[EB/OL].Http://cafefoundation.org/vz/pdf_EAS/2008/mark.moore.eas 2008.pdf,2012.
  • 8Giulio R. Enfica-FC:design,realization and flight test of all electric 2 seat aircraft powered by fuel cells[Paper 2010-1.6.4][R].International Council of Aeronautical Sciences,2010.
  • 9Dale A,Lawrence K M. Efficiency analysis for long-duration electric mavs[AIAA-2005-7090][R].2005.
  • 10顾诵芬.飞机总体设计[M]{H}北京:北京航空航天大学出版社,2001.

共引文献146

同被引文献38

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部