期刊文献+

基于轻量化卷积神经网络的光伏电池片缺陷检测方法研究 被引量:15

Defects detection method of photovoltaic cells based on lightweight convolutional neural network
下载PDF
导出
摘要 光伏电池片中的缺陷会影响整个光伏系统使用寿命及发电效率。针对现有电池片自动检测中尺寸弱小缺陷漏检率高的问题,建立了一种特征增强型轻量化卷积神经网络模型。针对性地设计了特征增强提取模块,提高了弱边界的提取能力,同时根据多尺度识别原理,增加了小目标预测层,实现了多尺度特征预测。在实验测试中,该模型平均精度均值(mAP)达到87.55%,比传统模型提高了6.78个百分点,同时检测速度达到40帧/s,满足精准性与实时性的检测要求。 The defects in photovoltaic cells affect the service life and power generation efficiency of the entire photovoltaic system.Aiming at the high missed detection rate of weak and small defects in the automatic detection of existing cells,a feature-enhanced lightweight convolutional neural network model was established.The feature enhancement extraction module was designed specifically to improve the extraction ability of weak boundaries.In addition,according to the principle of multi-scale recognition,a small target prediction layer was added to realize multi-scale feature prediction.In the experimental test,the mean average precision(mAP)of the model reaches to 87.55%,which is 6.78 percentage points higher than the traditional model.Moreover,the detection speed reaches to 40 fps,which meets the accuracy and real-time detection requirements.
作者 刘怀广 丁晚成 黄千稳 LIU Huaiguang;DING Wancheng;HUANG Qianwen(Key Laboratory of Metallurgical Equipment and Control Technology(Ministry of Education),Wuhan University of Science and Technology,Wuhan 430081,China;Institute of Robotics and Intelligent Systems,Wuhan University of Science and Technology,Wuhan 430081,China)
出处 《应用光学》 CAS CSCD 北大核心 2022年第1期87-94,共8页 Journal of Applied Optics
基金 国家重点专项资助项目(2018YFC1902400) 国家自然科学基金(51805386)。
关键词 光伏电池片 缺陷检测 深度学习 特征提取 小目标预测 photovoltaic cells defects detection deep learning feature extraction small target prediction
  • 相关文献

参考文献8

二级参考文献68

  • 1孙晓凯,倪卿元,陈文强.图像增强方法在深度学习图像识别场景应用中的可行性研究[J].电信科学,2020,36(S01):172-179. 被引量:10
  • 2涂宏斌,周新建.基于支持向量机的轴承表面缺陷检测[J].现代制造工程,2006(9):90-92. 被引量:9
  • 3Bengio Y. learning Deep Architectures for Al. Foundations andTrends in Machine Learning, 2009 , 2(1): 1-127.
  • 4Hinton G E,SaIakhut(Jinov R R. Reducing the Dimensionality ofData with Neural Networks. Science, 2006, 313(5786) : 504-507.
  • 5Bengio Y, Delalleau 0. On the Expressive Power of Deep Archilec-tures // Proc of the 22nd International Conference on Algorithmiclearning Theory. Ksp[M], Finland,2011: 18-36.
  • 6Yoshua B, l^eCun Y. Scaling Learning Algorithms towards Al.Cambridge,USA : MIT Press, 2007.
  • 7Dahl G E, Yu d, Deng L, el al. Context-Dependent Pre-trainedDeep Neural Networks for Large-Vocabulary Speech Recognition.IEEE Trans on Audio, Speech and Language Processing, 2012,20(1):30-42.
  • 8Hinton G,Deng L, Yu D, et al. Deep Neural Networks for AcousticModeling in Speech Recognition : The Shared Views of FourResearch Groups. IEEE Signal Processing Magazine, 2012, 29(6) : 82-97.
  • 9Sungjoon C, Kim E, Oh S. Human Behavior Prediction for SmartHomes Using Deep Learning // Proc of the 22nd IEEE InternationalSymposium on Robot and Human Interactive Communication. Gyeo-ngju, Republic of Korea, 2013 : 173-179.
  • 10林妙真.基于深度学习的人脸识别研究.硕士学位论文.大连:大连理工大学,2013.

共引文献337

同被引文献153

引证文献15

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部