期刊文献+

基于差分隐私的K-means算法优化研究综述 被引量:7

Review of K-means Algorithm Optimization Based on Differential Privacy
下载PDF
导出
摘要 差分隐私K-means算法(Differential Privacy K-means Algorithm,DP K-means)作为一种基于差分隐私技术的隐私保护数据挖掘(Privacy Preserving Data Mining,PPDM)模型,因简单高效且可保障数据的隐私而备受研究者的关注。文中首先阐述了差分隐私K-means算法的原理、隐私攻击模型,以分析算法的不足。然后从数据预处理、隐私预算分配、聚簇划分等3个角度讨论分析DP K-means算法改进研究的优缺点,并对研究中的相关数据集和通用评价指标进行了总结。最后指出DP K-means算法改进研究中亟待解决的挑战性问题,并展望了DP K-means算法的未来发展趋势。 Differential privacy K-means algorithm(DP K-means),as a kind of privacy preserving data mining(PPDM)model based on differential privacy technology,has attracted much attention from researchers because of its simplicity,efficiency and ability to guarantee data privacy.Firstly,the principle and privacy attack model of differential privacy K-means Algorithm are described,and the shortcomings of the algorithm are analyzed.Then,the advantages and disadvantages of the improvement research of DP K-means algorithm are discussed and analyzed from three perspectives,including data preprocessing,privacy budget allocation and cluster partition,and the relevant data sets and common evaluation indexes in the research are summarized.At last,the challenging problems to be solved in the improvement research of DP K-means algorithm are pointed out,and the future development trend of DP K-means algorithm is prospected.
作者 孔钰婷 谭富祥 赵鑫 张正航 白璐 钱育蓉 KONG Yu-ting;TAN Fu-xiang;ZHAO Xin;ZHANG Zheng-hang;BAI Lu;QIAN Yu-rong(College of Software,Xinjiang University,Urumqi 830000,China;Key Laboratory of Signal Detection&Processing in Xinjiang Autonomous Region,Xinjiang University,Urumqi 830046,China;Key Laboratory of Software Engineering,Xinjiang University,Xinjiang University,Urumqi 830000,China)
出处 《计算机科学》 CSCD 北大核心 2022年第2期162-173,共12页 Computer Science
基金 国家自然科学基金(61966035) 自治区科技厅国际合作项目(2020E01023) 自治区研究生科研创新项目(XJ2019G072)。
关键词 差分隐私K-means算法 差分隐私 隐私保护 隐私保护数据挖掘 Differential privacy K-means algorithm Differential privacy Privacy preservation Privacy preserving data mining
  • 相关文献

参考文献15

二级参考文献199

共引文献726

同被引文献76

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部