摘要
针对间歇曝气耦合内循环生物滤池的强化脱氮作用机制尚不明确的问题,探究了反应器沿程污染物去除特性,运用多项测试手段解析系统沿程生物量、生物活性、硝化及反硝化速率,并对反应器内沿程微生物种群特性进行分析.试验结果表明:沿程类蛋白荧光强度逐渐减弱,最终出水并未检测到类蛋白峰;反应器沿程10~50cm区段NH^(4)^(+)-N的降低并没有引起NO_(3)^(-)-N大幅增长,并且在50cm处NO_(3)^(-)-N含量有所下降,该段反硝化作用明显;沿程溶氧环境和生物量也显示,该区域具备较为明显的缺/厌氧的环境以及富集了充足的生物量;此外,50cm处的好氧速率(OUR)低但TTC-脱氢酶活性高以及反硝化速率明显强于硝化速率,均可表明系统在该区域强化了反硝化脱氮过程.另外,16S rRNA高通量测序分析显示:系统在门水平上涉及反硝化功能的微生物有更高的丰度,主要有Firmicutes(厚壁菌门:10.64%)和Bacteroidetes(拟杆菌门:22.29%);在属水平上也明显存在反硝化功能的Comamonas(丛毛单胞菌属:3.11%)和Hydrogenophaga(2.43%).上述研究均表明间歇曝气耦合内循环的BAF系统强化了底部区域的反硝化作用进而提升了脱氮效能.
The mechanism of enhanced denitrification by intermittent aeration-coupled internal circulation biofiltration is still not clear.We therefore investigated the pollutant removal in a biofiltration reactor.Several methods were used to analyze the biomass,biological activity,and nitrification and denitrification rates of the system,and the microbial population in the reactor was analyzed.The intensity of protein-like fluorescence gradually decreased throughout the system,and no protein-like peak was detected in the effluent.The decrease of NH^(4)^(+)-N along the 10-50cm section of the reactor did not cause a significant increase in NO_(3)^(-)-N,and the NO_(3)^(-)-N content decreased at 50cm.This section showed obvious denitrification.The dissolved oxygen and biomass levels throughout the system indicated an anoxic/anaerobic environment and significant denitrification.In addition,the low oxygen uptake rate(OUR)but high TTC-dehydrogenase activity at 50cm and the significantly higher denitrification rate compared to the nitrification rate indicated enhanced denitrification in this region.Based on 16S rRNA high-throughput sequencing analysis,the system had a higher abundance of microorganisms involved in denitrification at the phylum level,mainly Firmicutes(10.64%)and Bacteroidetes(22.29%).Denitrification was also evident at the genus level in Comamonas(3.11%)and Hydrogenophaga(2.43%).Our results suggest that the BAF system with intermittent aeration coupled with internal circulation enhanced denitrification in the bottom zone and thus improved the denitrification efficiency.
作者
任武昂
曹锋锋
鞠恺
金鹏康
李思敏
柴蓓蓓
雷晓辉
REN Wu-ang;CAO Feng-feng;JU Kai;JIN Peng-kang;LI Si-min;CHAI Bei-bei;LEI Xiao-hui(School of Architecture and Civil Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;School of Human Settlement Environment and Civil Engineering,Xi’an Jiaotong University,Xi’an 710049,China;Hebei Water Pollution Control and Ecological Restoration Technology Innovation Center,Handan 056038,China;School of Water Conservancy and Hydroelectric Power,Hebei University of Engineering,Handan 056038,China;Hebei Key Laboratory of Intelligent Water Conservancy,Handan 056038,China)
出处
《中国环境科学》
EI
CAS
CSCD
北大核心
2022年第2期629-636,共8页
China Environmental Science
基金
陕西省重点研发计划(2019ZDLNY01-08)
陕西省重点研发计划(2020ZDLNY06-07)
国家自然科学基金资助项目(NSFC 52070065)
河北省自然科学基金创新研究群体(Grant No.E2020402074)。
关键词
生物滤池
间歇曝气
内循环
污染物
微生物响应
biofilter
intermittent aeration
internal circulation
pollutants
microbial response