摘要
21世纪以来,能源短缺和环境污染一直是人类面临的重大挑战。光催化二氧化碳(CO_(2))还原,通过半导体捕获光能,获得碳氢化合物太阳能燃料是解决能源危机并推动碳循环的有前景的策略之一。然而,活性低、产物选择性差又极大地限制了这一技术的实际应用。因此,调控产物选择性并提高光催化效率、加深对CO_(2)还原反应机理的理解具有重要意义。近年来,超薄材料以其较高的比表面积,丰富的不饱和配位的表面原子,较短的电荷从内部到表面的迁移路径,以及可裁剪的能带结构受到了广泛关注,并在光催化CO_(2)还原领域取得了可喜的成果。本文在总结光催化CO_(2)还原反应机理的基础上,介绍了通过构建异质结构、设计Z型系统、引入助催化剂以及缺陷工程等策略促进超薄纳米结构电子空穴分离和调控其电荷迁移路径的研究成果,并指出了提高光催化CO_(2)还原效率和优化产物选择性的发展前景与挑战。
Since the beginning of the 21 st century,energy shortage and environmental pollution have been the major challenges faced by human beings.Photocatalytic carbon dioxide(CO_(2))reduction is one of the promising strategies to solve the energy crisis and promote the carbon cycle,in which semiconductor captures solar energy to obtain hydrocarbon fuel.However,the low activity and poor selectivity of the products greatly limit the practical application of this technology.Thus,it is of great significance to regulate product selectivity,improve photocatalytic efficiency,and deeply understand the mechanism of CO_(2)reduction reaction.In recent years,ultrathin materials have attracted extensive attention from researchers due to their high specific surface area,abundant unsaturated coordination surface atoms,shortened charge migration path from inside to surface,and tailorable energy band structure,and have achieved promising results in the field of photocatalytic CO_(2)reduction.In this paper,the reaction mechanism of photocatalytic CO_(2)reduction is firstly summarized.Next,the research results of promoting electron hole separation and regulating charge transport path of ultrathin nanostructures by constructing heterostructures,designing Z-scheme systems,introducing cocatalysts,and defect engineering are introduced.Finally,the prospect and challenge of improving the efficiency of photocatalytic CO_(2)reduction and optimizing the product selectivity are pointed out.
作者
高娃
熊宇杰
吴聪萍
周勇
邹志刚
GAO Wa;XIONG Yujie;WU Congping;ZHOU Yong;ZOU Zhigang(School of Physics,Nanjing University,Nanjing 210093,China;School of Chemistry and Materials Science,University of Science and Technology of China,Hefei 230026,China;Kunshan Institute of Innovation,Kunshan 215300,China;Jiangsu Yanchang Sunlaite Group,Kunshan 215300,China)
出处
《无机材料学报》
SCIE
EI
CAS
CSCD
北大核心
2022年第1期3-14,共12页
Journal of Inorganic Materials
基金
科技部国家重点研发计划(2018YFE0208500)
国家自然科学基金(51972164,21972065,21773114)
先进能源科学与技术广东省实验室佛山仙湖实验项目(XHD2020-002)
中国科学技术大学合肥微尺度物质科学国家研究中心开放课题(KF2020006)。