期刊文献+

磨矿过程设定值在线优化策略设计

Design of Online Optimizing Strategy of Ore Grinding Process Setpoint
下载PDF
导出
摘要 针对基于传统模型的方法难以在线优化磨矿过程回路设定值的问题,提出了基于案例推理与强化学习的运行指标优化方法,建立基于自回归神经网络的Q函数模型,并应用案例推理更新模型连接权值,实现了磨矿过程关键参数的实时优化。 It is difficult to optimize the setpoint of ore grinding process loop online base on the method of conventional model.Aiming at this problem,an optimizing method of operation index based on case-based reasoning and reinforcement learning is proposed.The real-time optimization for key pa-rameters of grinding process is realized through establishing Q function model based on autoregression neural network and updating model connection weights by apply ing case-based reasoning.
作者 徐凯 罗赛 陈洪彬 XU Kai;LUO Sai;CHEN Hong-bin(Angang Group Guanbaoshan Mining Industry Co.,Ltd;Shenyang Automation Institute of Chinese Academy ofSciences;Robotics&Intelligent Manufacturing and Innovation Institute of Chinese Academy of Sciences;Angang Group Mining Industry Design&Research Institute,Anshan 114044)
出处 《冶金设备管理与维修》 2022年第1期5-6,7,8,共4页 Metallurgical Equipment Management and Maintenance
关键词 案例推理 强化学习 Q函数 设定值优化 磨矿过程 Case-based reasoning reinforcement learning Q function setpoint optimization grinding process
  • 相关文献

参考文献3

二级参考文献23

  • 1楚云飞,徐文立,王峻,万维汉.基于切换控制的均匀液位控制[J].清华大学学报(自然科学版),2005,45(1):107-110. 被引量:9
  • 2周平,岳恒,赵大勇,柴天佑.基于案例推理的软测量方法及在磨矿过程中的应用[J].控制与决策,2006,21(6):646-650. 被引量:18
  • 3户丹,于军琪,郭春燕.选矿分级泵池液位的模糊控制算法研究[J].金属矿山,2007,36(9):97-100. 被引量:5
  • 4Li X, McKee D J, Horberry T, Powell M S. The control room operator: the forgotten element in mineral process control. Minerals Engineering, 2011, 24(8): 894-902.
  • 5van Vuuren M J J, Aldrich C, Auret L. Detecting changes in the operational states of hydrocyclones. Minerals Engi- neering, 2011, 24(14): 1532-1544.
  • 6Wei D H, Craig I K. Grinding mill circuits - a survey of con- trol and economic concerns. International Journal of Mineral Processing, 2009, 90(1-4): 56-66.
  • 7Duarte M, Sepfilveda F, Castillo A, Contreras A, Lazcano V, Gimoez P, Castelli L. A comparative experinmntal study of five multivariable control strategies applied to a grinding plant. Powder Technology, 1999, 104(1): 1-28.
  • 8Pomerleau A, Hodouin D, Desbiens A, Gagnon I. A survey of grinding circuit control methods: from decentralized PID controllers to multivariable predictive controllers. Powder Technology, 2000, 108(2-3): 103-115.
  • 9Ramasamy M, Narayanan S S, Rao Ch D P. Control of ball mill grinding circuit using model predictive control scheme. Journal of Process Control, 2005, 15(3): 273-283.
  • 10Sanchis R, Romero J A, Martin J M. A new approach to averaging level control. Control Engineering Practice, 2011, 19(9): 1037-1043.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部