期刊文献+

移动机器人SLAM位姿估计的改进四元数无迹卡尔曼滤波 被引量:13

Advanced quaternion unscented Kalman filter based on SLAM of mobile robot pose estimation
下载PDF
导出
摘要 在全自主运动控制的移动机器人系统中,自身位姿的估计和校正对于移动机器人的运动至关重要。卡尔曼滤波是解决移动机器人同步定位与地图构建(SLAM)常用方法。相较于卡尔曼滤波,无迹卡尔曼滤波(UKF)无须对复杂的非线性函数进行雅可比矩阵运算。本文基于无迹卡尔曼滤波,根据先验协方差的平方根选择sigma点,计算协方差以及加权均值。用四元数表示姿态,将四元数矢量转换为旋转空间进行矩阵运算,在此基础上设计了一种位姿估计算法——基于四元数平方根的无迹卡尔曼滤波(QSR-UKF)算法。试验将EKF、QSR-UKF、SR-UKFEKF 3种算法的位姿估计结果进行仿真分析,并通过相关定量指标进行了描述,验证了本文算法的有效性。 In automatic motion controlled mobile robot system,the estimation and correction of its own pose is very crucial for the motion of robot.Kalman filter is a classical method to solve the problem of simultaneous localization and mapping(SLAM)in robot system.Compared with Kalman filter,unscented Kalman filter(UKF)uses nonlinear model directly,avoids operation of Jacobian matrix of complex nonlinear function.In this paper,based on the unscented Kalman filter,sigma points are selected by square root decomposition of prior covariance,and then weighted mean and covariance are calculated.In addition,Quaternion is used to represent attitude of robot,and quaternion vector is converted to rotation space for matrix operation.According to the characteristic of square root decomposition and quaternion vector,a quaternion square root unscented Kalman filter is proposed.By comparing the robot poses estimation results on quaternion square root unscented Kalman filter(QSR-UKF),square root unscented Kalman filter(SR-UKF)and extended Kalman filter(EKF),the simulation results show that the proposed QSR-UKF method is effective.
作者 赵玏洋 闫利 ZHAO Leyang;YAN Li(School of Geodesy and Geomatics, Wuhan University, Wuhan 430079, China)
出处 《测绘学报》 EI CSCD 北大核心 2022年第2期212-223,共12页 Acta Geodaetica et Cartographica Sinica
基金 国家重点研发计划(2020YFD1100203)。
关键词 移动机器人 同时定位与地图构建 无迹卡尔曼滤波 四元数 mobile robot simultaneous localization and mapping unscented Kalman filter quaternion
  • 相关文献

参考文献14

二级参考文献114

  • 1姜若愚,范丰仙.智能机器人传感器的研究述评[J].湖南大学学报(自然科学版),1994,21(5):96-100. 被引量:1
  • 2王宏,张钹.基于地图的室外移动机器人路径规划与导航系统[J].机器人,1994,16(1):24-29. 被引量:5
  • 3李伟.在未知环境中基于模糊逻辑的移动机器人行为控制[J].控制理论与应用,1996,13(2):153-162. 被引量:16
  • 4马兆青,袁曾任.基于栅格方法的移动机器人实时导航和避障[J].机器人,1996,18(6):344-348. 被引量:91
  • 5M Csorba.Simultaneous Localisation and Map Building[D].Oxford:University of Oxford,1997.
  • 6T Bailey,H Durrant-Whyte.Simultaneous localization and mapping (SLAM):Part Ⅱ[J].Robotics and Automation Magazine,IEEE,2006,13(3):108-117.
  • 7T Bailey,J Nieto,J Guivant,M Stevens,E Nebot.Consistency of the EKF-SLAM algorithm[A].IEEE/RSJ International Conference on Intelligent Robots and Systems[C].Beijing,China:IEEE,2006.3562-3568.
  • 8Montemerlo.FastSLAM:A Factored Solution to the Simultaneous Localization and Mapping Problem with Unknown Data Association[D].Pittsburgh:Carnegie Mellon University,2003.
  • 9Yang Liu,Fengchi Sun,Tong Tao,Jing Yuan,Chao Li.A solution to active simultaneous localization and mapping problem based on optimal control[A].Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation[C].Harbin,China:IEEE,2007.314-319.
  • 10Cindy Leung,Shoudong Huang,Gamini Dissanayake.Active SLAM in Structured environments[A].2008 IEEE International Conference on Robotics and Automation[C].Pasadena,CA,USA:IEEE,2008.1989-1903.

共引文献320

同被引文献125

引证文献13

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部