摘要
针对三维非稳态对流扩散反应方程,构造了一种高精度紧致有限差分格式,对空间的离散采用四阶紧致差分方法,对时间的离散采用Taylor级数展开和余项修正技术,所提格式在时间上的精度为二阶、在空间上的精度为四阶.利用Fourier稳定性分析法证明了该格式是无条件稳定的.最后给出数值算例验证了理论结果.
Based on the 4th-order compact difference scheme for spatial discretization,the Taylor series expansion and the error remainder correction method for temporal discretization,a high-order compact finite difference scheme for solving the 3D unsteady convection diffusion reaction equations was proposed.The unconditional stability was proved with the Fourier analysis method.The proposed scheme has 2nd-order accuracy in time and 4th-order accuracy in space.At last,numerical examples validate the theoretical results.
作者
魏剑英
葛永斌
WEI Jianying;GE Yongbin(School of Mathematics and Statistics,Ningxia University,Yinchuan 750021,P.R.China)
出处
《应用数学和力学》
CSCD
北大核心
2022年第2期187-197,共11页
Applied Mathematics and Mechanics
基金
国家自然科学基金(12161067,11961054,11902170)
宁夏自然科学基金(2020AAC03059)
宁夏自治区青年拔尖人才培养工程项目。
关键词
对流扩散反应方程
变对流项和反应项系数
高精度紧致格式
无条件稳定
有限差分法
convection diffusion reaction equation
variable convection and reaction coefficient
high-order compact scheme
unconditionally stable
finite difference method