期刊文献+

基于随机分布的图像域隐写分析算法研究

Research on Steganalysis Algorithm of Image Domain Based on Random Distribution
下载PDF
导出
摘要 信息隐藏是信息安全研究的重点领域.随着隐写术的广泛应用,网络中的攻击者通过隐写来进行隐蔽通信传递信息,造成了极大的安全隐患,因此作为隐写对抗的隐写分析技术变得尤为重要.本文提出了一种基于Fisher-Yates隐写数据随机置乱算法,首先利用BOSSBase 1.01数据集,对nsF5、J-UNIWORD和UERD 3种隐写算法进行训练,再通过隐写分析残差网络(SRNet)对9种不同嵌入率的数据集进行隐写分析,通过对隐写算法和隐写分析做对抗测试,验证了随机分布的隐写分析残差网络在图像域的有效性. Information hiding is a crucial area of information security research.With the wide application of steganography, the attackers in the network use steganography to communicate and transmit information, causing great security risks.Therefore, steganography analysis technology as a steganography confrontation becomes particularly important.This paper proposes a random scrambling algorithm based on Fisher-Yates steganographic data.First, the BOSSBase 1.01 data set is used to train three steganographic algorithms, nsF5,J-UNIWORD,and UERD,and then the steganalysis residual network(SRNet) is used to carry out steganalysis on nine datasets with different embedding rates.Through confrontation tests on steganalysis algorithms and steganalysis, this paper verifies the effectiveness of the stochastically distributed steganalysis residual network in the image domain.
作者 毛春霞 李军 胡涛 赵玄玉 MAO Chunxia;LI Jun;HU Tao;ZHAO Xuanyu(School of Information Engineering,Hubei Minzu University,Enshi 445000,China)
出处 《湖北民族大学学报(自然科学版)》 CAS 2022年第1期73-80,共8页 Journal of Hubei Minzu University:Natural Science Edition
基金 国家自然科学基金项目(61962019,61961017) 恩施州科学技术局科技项目(D20190014,XYJ2021000056) 湖北省硒食品营养与健康智能技术工程研究中心开放课题(PT082004,PT082105) 湖北省技术创新专项(鄂西民族专项)项目(2019AKB104)。
关键词 信息隐藏 信息安全 隐写分析 SRNet 随机分布 information hiding information security steganalysis SRNet random distribution
  • 相关文献

参考文献6

二级参考文献32

  • 1Sallee P. Model-based steganography—Digital watermarking [M]. Berlin Heidelberg: Springer, 2003: 154-167.
  • 2Fridrich J, Pevny T, Kodovsky J. Statistically undetectable JPEG steganography: dead ends challenges, and opportunities [C]//Proceedings of the 9th workshop on Multimedia & security. ACM, 2007: 3-14.
  • 3Westfeld A. F5-a steganographic algorithm[C]//Information hiding. Springer Berlin Heidelberg, 2001: 289-302.
  • 4Holub V, Fridrich J, Denemark T. Universal distortion function for steganography in an arbitrary domain [J]. EURASIP Journal on Information Security, 2014, 2014(1): 1-13.
  • 5Guo L, Ni J, Su W. Using statistical image model for JPEG steganography: uniform embedding revisited [J]. IEEE Transactions on Information Forensics and Security, 2015, 10(12): 2669-2680.
  • 6Guo L, Ni J, Shi Y Q. Uniform embedding for efficient JPEG steganography [J]. IEEE Transactions on Information Forensics and Security, 2014, 9(5): 814-825.
  • 7Fridrich J, Goljan M, Hogea D. Steganalysis of JPEG images: breaking the F5 algorithm[C]//Information hiding. Springer Berlin Heidelberg, 2002: 310-323.
  • 8Kodovsky J, Fridrich J. Quantitative steganalysis of LSB embedding in JPEG domain[C]//Proceedings of the 12th ACM workshop on Multimedia and security. ACM, 2010: 187-198.
  • 9Kodovsky J, Fridrich J. Steganalysis of JPEG images using rich models [C]//Proceeding of the International Society of Optical Engineering, 2012, 8303: 83030A.
  • 10Holub V, Fridrich J. Low-complexity features for JPEG steganalysis using undecimated DCT[J]. IEEE Transactions on Information Forensics and Security, 2015, 10(2): 219-228.

共引文献67

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部