期刊文献+

基于改进麻雀算法优化卷积神经网络的滚动轴承故障诊断 被引量:5

Rolling bearing fault diagnosis based on a convolutional neural network optimized by the improved sparrow algorithm
下载PDF
导出
摘要 为了更高效率地诊断轴承故障,提出了一种基于精英反向学习(OBL)改进麻雀算法(SSA)优化卷积神经网络(CNN)的滚动轴承故障诊断方案,利用改进SSA较强的寻优能力和较快的收敛速度,优化CNN的超参数。以美国凯斯西储大学的滚动轴承数据作为实验数据对该方案加以检验,并与BP神经网络、支持向量机(SVM)以及未优化的CNN模型等故障诊断方式相比较。结果表明:该方案分类准确度更高,用时更少。 In order to diagnose bearing faults more efficiently, a rolling bearing fault diagnosis scheme is proposed based on a convolutional neural network(CNN), which is optimized by the improved sparrow search algorithm(SSA) based on elite opposition-based learning(OBL). The strong optimization ability and fast convergence speed of the improved SSA are used to optimize the hyperparameters of CNN. The method is tested on the experimental data, which is the rolling bearing data from Case Western Reserve University, and compared with some fault diagnosis methods such as BP neural network, support vector machine(SVM) and unoptimized CNN model. The results show that the method has higher classification accuracy and less time.
作者 程渠超 刘湲 CHENG Quchao;LIU Yuan(School of Electrical Engineering,Shanghai Dianji University,Shanghai 201306,China)
出处 《上海电机学院学报》 2022年第1期40-45,共6页 Journal of Shanghai Dianji University
关键词 麻雀算法(SSA) 卷积神经网络(CNN) 故障诊断 滚动轴承 sparrow search algorithm(SSA) convolutional neural network(CNN) fault diagnosis rolling bearing
  • 相关文献

参考文献5

二级参考文献48

  • 1钟一文,杨建刚,宁正元.求解TSP问题的离散粒子群优化算法[J].系统工程理论与实践,2006,26(6):88-94. 被引量:48
  • 2周福昌,陈进,何俊,毕果,张桂才,李富才.基于小波滤波与循环平稳度分析的滚动轴承早期故障诊断方法[J].振动与冲击,2006,25(4):91-93. 被引量:17
  • 3张颖,吕路勇,万书亭.冲击脉冲法在滚动轴承故障诊断中的应用[J].石油化工设备技术,2007,28(4):60-64. 被引量:4
  • 4王世一.数字信号处理[M].北京:北京理工大学出版社,2005.
  • 5William W J, Zalubas E J. Helicopter Transmission Fault Detection via Time - Frequency, Seale and Spectral Methods[J]. Mechanical and Signal Processing,2000, 14(4) :25 -30.
  • 6程军圣,杨宇,于德介.一种新的时频分析方法--局部均值分解方法[C]∥2008年全国振动工程及应用学术会议暨第十一届全国设备故障诊断学术会议论文集,2008.
  • 7Huang N E,Zheng Shen, Steven R L, et al. The Empiri- cal Mode Decomposition and Hilbert Spectrum for Non- linear and Non- Stationary Time Series Analysis [J]. Proceedings of the Royal Society of London, Series A, 1998,454(12) :903 - 995.
  • 8Qin S R, Zhong Y M. A New Algorithm of Hilbert - Huang Transform [ J ]. Mechanical Systems and Signal Processing,2006,20(8) :1 941 -1 952.
  • 9Jonathan S S. The Local Mean Decomposition and Its Application to EEG Perception Date [ J ]. Journal of the Royal Society Interface,2005,2 (5) :443 - 454.
  • 10Leontaritis I J, Billings S A. Input - Output Parametric Models for Non -Linear Systems, Part I: Deterministic Non - Linear Systems [ J ]. International Journal of Con- trol, 1985,41 (2) :303 - 328.

共引文献88

同被引文献46

引证文献5

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部