期刊文献+

基于径向基激活函数的高光谱小目标检测 被引量:10

Small Object Detection in Hyperspectral Images Based on Radial Basis Activation Function
原文传递
导出
摘要 基于深度学习的目标检测方法是当前计算机视觉领域的研究热点,但在小目标的检测问题上,基于深度学习的检测器存在较多的漏检。高光谱图像的每个像元包含了物质的光谱信息,能够提升小目标的检测率。然而,高光谱图像的相邻波段相关性高,需要从中选取具备代表性的波段以降低计算冗余。为此,提出了一种高光谱小目标检测模型,使用径向基激活函数(RBAF)进行光谱筛选与目标检测。具体而言,针对高光谱图像波段冗余的特点,利用RBAF设计注意力机制进行光谱维的特征筛选;针对小目标纹理模糊,相对于背景不显著的特点,先对输入图像进行分辨率重建,随后利用RBAF构建径向基目标输出子网络(RBOON),以加强目标分类。为了简化模型,将光谱筛选与分辨率重建整合为注意力分辨率重建子网络(ABRRN),配合径RBOON,检测模型能够筛选特定光谱,抑制虚警,从而提高小目标检测的正确率。高光谱小目标检测实验表明,本研究方法可以使两种检测精度评价指标AP50和AP50:95分别提升5.4%和0.2%,相较其他方法更具备优势。 Object detection methods based on deep learning are the current research focus of computer vision.However,when detecting small objects,existing detectors often suffer from missing detection.Every pixel of hyperspectral images contain the spectral information of small object materials.Therefore,they can provide additional support for improving the detection performance on small objects.However,the adjacent bands of hyperspectral images are highly correlated.It is thus necessary to select representative bands to reduce the computational redundancy.In response,this paper proposed a hyperspectral small object detection model,which used the radial basis activation function(RBAF)to carry out spectral screening and object detection.Specifically,in view of the band redundancy of hyperspectral images,an attention mechanism based on the RBAF was designed for spectral screening.As for the high texture fuzziness and low distinguishability against the background of small objects,the resolution of input images was reconstructed first.Then,a radial basis object output network(RBOON)based on the RBAF was constructed to enhance object classification.For model simplification,spectrum screening and resolution reconstruction were integrated into an attention-based resolution reconstruction network(ABRRN).With the combination of the ABRRN and RBOON,the detection model can screen the specific spectrum and suppress false alarms and thus improve the accuracy of small object detection.Hyperspectral small object detection experiments show that the proposed method improves the two detection accuracy criteria,namely AP50 and AP50:95,by 5.4% and 0.2%,respectively,which means it is better than other methods.
作者 王勃凡 赵海涛 Wang Bofan;Zhao Haitao(School of Information Science and Engineering,East China University of Science and Technology,Shanghai 200237,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2021年第23期87-97,共11页 Acta Optica Sinica
基金 国家自然科学基金(61973122)。
关键词 机器视觉 图像检测系统 高光谱图像 目标检测 径向基函数 注意力机制 machine vision image detection system hyperspectral image object detection radial basis function attention mechanism
  • 相关文献

参考文献6

二级参考文献29

  • 1寻丽娜,方勇华,李新.高光谱图像中基于端元提取的小目标检测算法[J].光学学报,2007,27(7):1178-1182. 被引量:27
  • 2Zhao Yongqiang,Zhang Guohua,Jie Feiranet al..Unsupervisedclassification of spectropolarimetric data by region-based evidencefusion[J].IEEE Geoscience and Remote Sensing Letters,2011,8(4):755-759.
  • 3J.Wright,A.Yang,A.Ganeshet al..Robust face recognitionvia sparse representation[J].IEEE Trans.Pattern Analysis andMachine Intelligence,2009,31(2):210-227.
  • 4J.Theiler,K.Gloce.Sparse linear filters for detection andclassification in hyperspectral imagery[C].SPIE,2006,6233:623301.
  • 5Qazi Samiul Haq,Lixin Shi,Linmi Tao et al..A L1-minimization based approach for hyperspectral data classification[C].Proceedings of 2010International Conference on RemoteSensing(ICRS),2010,2:139-142.
  • 6Yi Chen,Nasser M.Nasrabadi,Trac D.Tran.Hyperspectralimage classification using dictionary-based sparse representation[J].IEEE Trans.Geoscience and Remote Sensing,2011,49(10):3973-3985.
  • 7Seung Jean Kim,K.Koh,M.Lustig et al..An interior-pointmethod for large-scale L1-regularized least squares[J].IEEE J.Sel.Top.Signal Processing,2007,1(4):606-617.
  • 8刘小刚,赵慧洁,李娜.基于多重分形谱的高光谱数据特征提取[J].光学学报,2009,29(3):844-848. 被引量:26
  • 9石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:712
  • 10胡正平,贾千文,许成谦.基于稀疏表示结合流形距离的超球覆盖可拒绝模式识别算法研究[J].信号处理,2010,26(4):533-538. 被引量:6

共引文献104

同被引文献85

引证文献10

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部