期刊文献+

基于正负关联规则的告警根因计算方法

下载PDF
导出
摘要 在大型IT系统中偶尔会出现故障状况或异常,为及时抢通业务,需要采用快速定位告警根因的方法。常用的告警根因分析方法主要是关联规则分析,而普通的关联规则面对大量数据存在一定缺陷,可能会挖掘到统计学上相关但是逻辑上不相关的无效告警关联规则。文章提出一种基于正负关联规则的告警根因计算方法,采用错误日志、告警的聚类压缩处理方法,结合机器设备之间的拓扑关联关系,对异常事件进行正负关联度分析挖掘,找到两两异常事件之间的关联关系,作为故障根因的判断依据。在实验数据部分,得到较为准确的根因分析结果,证明该算法能减少冗余无效规则,提高挖掘效率。 Since there are many faults or anomalies occurring in large IT system, root cause analysis for alarm information is very important. The main analysis method is association rules analysis, while the common association rules have certain defects facing big data, and will mine invalid alarm association rules which are statistically relevant but logically irrelevant.This paper proposes one calculation method of alarm root cause based on positive and negative association rules, which find the relationship between each two anomalies as decision judgment, with the error log and alarm clustering compression processing method, topological relationship between machines, and the analysis of the positive and negative correlation between anomalies. In the part of experimental data, more accurate root cause analysis results are obtained, which proves the algorithm can reduce redundant invalid rules and improve mining efficiency.
作者 王锐
出处 《科技创新与应用》 2022年第5期158-160,共3页 Technology Innovation and Application
关键词 根因分析 正负关联规则 拓扑关系 root cause analysis positive and negative association rules topological relationship
  • 相关文献

参考文献8

二级参考文献72

  • 1王妍.基于关联规则的自适应学习[J].计算机产品与流通,2019,0(12):235-235. 被引量:3
  • 2吕杰林,陈是维.基于相关性度量的关联规则挖掘[J].浙江大学学报(理学版),2012,39(3):284-288. 被引量:15
  • 3徐章艳,刘美玲,张师超,卢景丽,区玉明.Apriori算法的三种优化方法[J].计算机工程与应用,2004,40(36):190-192. 被引量:71
  • 4曾万聃,周绪波,戴勃,常桂然,李春平.关联规则挖掘的矩阵算法[J].计算机工程,2006,32(2):45-47. 被引量:33
  • 5李伟东,倪志伟,刘晓.基于兴趣度的关联规则挖掘[J].计算机技术与发展,2007,17(6):80-82. 被引量:5
  • 6AGRWAL R, SRIKAN R. Fast algorithms for mining association rules in large databases [ C]//Proceedings of the 20th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann Publishers, 1994:487 - 499.
  • 7PARK J S, CHEN M S, YU P S. An effective Hash based algorithm for mining association rules [ C]//Proceedings of International Conference on the Special Interest Group on Management of Data. New York: ACM, 1995:175 - 186.
  • 8HAN J, FU Y. Discovery of multiple-level association rules from large databases [ C]//Proceedings of the 20th International Conference on Very Large Database. Zuich, Switzerland: [ s. n. ], 1995: 420 - 431.
  • 9SAVASERE A, OMIECINSKI E, NAVATHE S. An efficient algorithm for mining association rules in large databases [ C]// Proceedings of the 21st International Conference on Very Large Database. New York: ACM, 1995:432-443.
  • 10TOLVONEN H . Sampling large databases for association rules [C]// Proceedings of the 22nd International Conference on Very Large Database. Bombay, India [ s. n. ], 1996:134 - 145.

共引文献134

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部