期刊文献+

基于生命周期的电信诈骗聚类研究

原文传递
导出
摘要 本文主要描述了中国联通广西分公司为针对电信诈骗,而研究涉案号码的使用行为,发现涉诈特征,根据特征对号码进行监控。由于诈骗手段变化较快,对于涉案号码的行为难以鉴定,因此利用电信市场经营的客户生命周期理论,优化诈骗号码分类模型,最终提高了诈骗号码聚类特征的显著性。
作者 农博文
出处 《网络安全技术与应用》 2022年第2期158-159,共2页 Network Security Technology & Application
  • 相关文献

参考文献2

二级参考文献21

  • 1张旻,张燕平,程家兴.时间序列相似模式的分层匹配[J].计算机辅助设计与图形学学报,2005,17(7):1480-1485. 被引量:6
  • 2Kim S W, Park D H, Lee H G. Efficient Processing of Subsequence Matching with the Euclidean Metric in Time-Series Databases. Information Processing Letters, 2004, 90 (5) : 253 - 260.
  • 3Kontaki M, Papadopoulos A N, Manolopoulos Y. Adaptive Similarity Search in Streaming Time Series with Sliding Windows. Data & Knowledge Engineering, 2007, 63 (2): 478- 502.
  • 4Peng Z K, Tse P W, Chu F L. An Improved Hilbert-Huang Transform and Its Application in Vibration Signal Analysis. Journal of Sound and Vibration, 2005, 286(1/2) : 187 -205.
  • 5Keogh E, Chu S, Hart D, et al. An On-line Algorithm for Segmenting Time Series // Proc of the IEEE International Conference on Data Mining. San Jose, USA, 2001 : 289 -296.
  • 6Keogh E, Kasetty S. On the Need for Time Series Data Mining Benchmarks : A Survey and Empirical Demonstration// Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002:102 - 111.
  • 7Ordonez C, Omiecinski E. Efficient Disk-Based K-means Clustering for Relational Databases. IEEE Trans on Knowledge and Data Engineering, 2004, 16(8) : 909 -921.
  • 8Zhang Yan, Sun Zhengxing, Li Wenhui. Texture Synthesis Based on Direction Empirical Mode Decomposition. Computers & Graphics, 2008, 32(2): 175-186.
  • 9Last M, Klein Y, Kandel A. Knowledge Discovery in Time Series Databases. IEEE Trans on Systems, Man and Cybernetics , 2001, 31(1): 160-169.
  • 10Moon Y S, Kim J. Efficient Moving Average Transform-Based Subsequence Matching Algorithms in Time-Series Databases. Information Sciences: An International Journal, 2007, 177 (23) : 5415 - 5431.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部