期刊文献+

基于在线互评的成绩预测模型研究

Research on Performance Prediction Model Based on Online Mutual Evaluation
下载PDF
导出
摘要 在课程学习中实时对学生掌握情况进行预测,可以尽早对学生学习行为进行干预。本文通过在线互评系统采集学生知识学习中与最终考试成绩相关的课程参与度、作业提交频次、作业完成时间、自评分数以及匿名互评分数等相关性预测变量,预测变量的采集全程无监督、学生无感知、平时成绩无教师校准评价干预,提出一种基于在线互评的成绩预测模型研究。对比常用的机器学习分类算法,通过实验分析可知,多元线性回归算法在预测变量不确定的前提下,在算法稳定性、准确性上都能满足可靠预测需求。 In the course of study, real-time prediction of students’ mastery can intervene in students’ learning behavior as early as possible. This paper uses an online mutual evaluation system to collect relevant predictive variables such as course participation,homework submission frequency, homework completion time, number of self-ratings, and anonymous mutual ratings related to the final exam scores in student knowledge learning. The collection of predictive variables is unsupervised throughout, Students have no perception, and there is no teacher calibration and evaluation intervention in normal performance. A performance prediction model based on online mutual evaluation is proposed. Compared with commonly used machine learning classification algorithms,experimental analysis shows that the multiple linear regression algorithm can meet the demand for reliable prediction in terms of algorithm stability and accuracy under the premise of uncertain predictor variables.
作者 魏明俊 WEI Mingjun(Hubei University of Medicine,Shiyan Hubei 442000,China)
机构地区 湖北医药学院
出处 《信息与电脑》 2021年第23期74-76,共3页 Information & Computer
基金 湖北医药学院“基于数据挖掘的学习预警系统的设计与实现”(项目编号:2020QDJRW011)。
关键词 在线互评 相关性分析 学习行为 成绩预测 多元回归 online mutual evaluation correlation analysis learning behavior performance prediction multiple regression
  • 相关文献

参考文献6

二级参考文献43

  • 1Adhatrao, Honrao, V. (2013). K., Gaykar, A., Predicting student ' Dhawan, A., Jha, R., & performance using ID3 and C4 5 classification algorithms [ J ]. International Journal of Data Mining & Knowledge Management Process, (3) :5.
  • 2陈文伟,黄金才(2004).数据仓库与数据挖掘[M].北京:人民邮电出版社(第2版):4.
  • 3黄荷(2012).今日谈:大数据时代降临[J].半月谈,(17):49-50.
  • 4Kantardzic, M. (2011). Data mining: Concepts, models, methods and algorithms[ M] , Wiley-IEEE Press.
  • 5SPSS White Paper ( 2004 ). Working with telecommunications churning in the telecommunications industry[ R]. SPSS White Paper.
  • 6Zhu Xiaoliang, Wang Jian, Yang Hongcan, & Wu Shangzhuo (2009). Research and Application of the improved Algorithm CA. 5 on Decision Tree [ A ]. International Conference on Test and Measurement (ICTM)[C]. (2) :184-187.
  • 7Siemens, G., & Baker, R. S. J. d. Learning Analytics and Educational Data Mining: Towards Communication and Collaboration [A]. Simon Buckingham Shum. Proceedings of the Second International Conference on Learning Analytics & Knowledge[C]. New York: ACM, 2012.252-254.
  • 8陈珊.促进问题解决的学习干预设计与应用研究[D].上海:华东师范大学,2014.
  • 9Sandeep M. Jayaprakash, Erik W. Moody, Eitel J.M. Laur I a, James R. Regan, Joshua D. Baron. Early Alert of Academically At-Risk Learner: An Open Source Analytics Initiative[J]. Journal of Learning Analytics, 2014, (1) : 6-47.
  • 10谢中才,郑惠娟.大学生高考成绩与大学阶段学习成绩的相关分析[J].数学的实践与认识,2009,39(12):1-6. 被引量:30

共引文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部