摘要
基于Gleeble-3500热模拟试验机平台,对6061铝合金进行等温热压缩实验,研究了该合金在变形温度为350~500℃和应变速率为0.01~10 s^(-1)条件下的高温流变行为;并建立了6061铝合金的Arrhenius本构方程,应用于Deform软件进行热压缩实验模拟;基于动态材料模型和Murty准则,建立了6061铝合金在不同应变下的加工图,结合显微组织进行验证。结果表明,该合金材料的流变应力随应变速率增加而增大,随变形温度降低而增大;建立的本构方程能较好描述该合金的高温流变行为;变形温度为460~500℃,应变速率为0.1~0.5 s^(-1)的区域是该合金最佳工艺参数范围。
Based on the Gleeble-3500 thermal simulation testing machine platform,isothermal compressive experiments were performed for aluminum alloy 6061,and the high temperature flow behavior of the alloy was studied at deformation temperature of 350~500℃and strain rate of 0.01~10 s^(-1).According to the test data,the Arrhenius constitutive equation of 6061 aluminum alloy was established.The established Arrhenius constitutive equation for the alloy was applied to the Deform software for experimental simulation of thermal compression.According to the dynamic material model and Murty method,the processing map of the alloy at different strains was established and verified by the microstructure.Results show that the flow stress of the alloy increases with the increase of strain rate and the decrease of deformation temperature.The established constitutive equation could better describe the flow behavior of the alloy at high temperature.The optimal process parameters for the alloy were the range with a deformation temperature of 460~500℃and a strain rate of 0.1~0.5 s^(-1).
作者
王海龙
梁卫抗
王乾廷
林光磊
WANG Hailong;LIANG Weikang;WANG Qianting;LIN Guanglei(School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350118, China;Fujian Provincial Key Laboratory of Advanced Materials Processing and Application, Fuzhou 350118, China;Fujian Provincial Precision Processing Manufacturing Engineering Research Center, Fuzhou 350118, China;Fujian Nanping Aluminium Co., LTD, Nanping 353000, China)
出处
《福建工程学院学报》
CAS
2022年第1期35-41,共7页
Journal of Fujian University of Technology
基金
福州市科技重大项目(2021-ZD-214)
福州市科技创新平台项目(2020-PT-145)
福建省科技计划对外合作项目(2020I1003)。
关键词
6061铝合金
流变应力
本构方程
热加工图
aluminum alloy 6061
flow stress
constitutive equation
thermal processing map