期刊文献+

基于差分进化算法的PTA过程平均粒径的动态软测量

Dynamic soft sensor of average particle size in PTA process based on differential evolution algorithm
下载PDF
导出
摘要 针对工业过程中由于时延问题造成软测量模型预测精度不高的问题,给出了一种通过差分进化算法估计时延的动态软测量方法。通过偏最小二乘法建立合适的适应度函数,将软测量系统的时延参数估计问题转化为一个多维非线性优化问题,然后利用差分进化算法的全局搜索能力求解该优化问题。针对PTA精制过程中的PTA平均粒径大小建模研究,结果表明,时延参数估计的引入大大提高了软测量模型的预测精度,证实了所提方法的有效性和可行性。 Aiming at the problem that the prediction accuracy of soft sensor model is not high due to the delay problem in industrial process,a dynamic soft sensor method using differential evolution algorithm to estimate the delay is proposed.The problem of time delay estimation of soft measurement system is transformed into a multi-dimensional nonlinear optimization problem by establishing a suitable fitness function by partial least square method,and then the global search ability of differential evolution algorithm is used to solve the optimization problem.Aiming at the modeling of PTA mean particle size in PTA refining process,the results show that the introduction of delay parameter estimation greatly improves the prediction accuracy of soft sensor model,and the validity and feasibility of the proposed method are verified.
作者 郭储磊 Guo Chulei(Automatic College,Nanjing University of Posts and Telecommunications,Nanjing 210000,China)
出处 《信息技术与网络安全》 2022年第2期46-52,共7页 Information Technology and Network Security
关键词 软测量 差分进化 时延估计 偏最小二乘法 soft sensor differential evolution time delay estimation partial least squares
  • 相关文献

参考文献3

二级参考文献104

共引文献314

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部