期刊文献+

含两项分数阶导数的边值问题正解的存在性

Existence of positive solutions for boundary value problems with two fractional derivatives
下载PDF
导出
摘要 研究一类含两项分数阶导数的零边值条件的微分方程,在非线项满足与线性算子的第一特征值有关的假设条件下,应用不动点指数理论和Guo-Krasnoselskii不动点定理得到边值问题正解的存在性. A class of differential equations with zero boundary value conditions of two term fractional derivatives is studied.Under the assumption that the non-linear term is related to the first eigenvalue of linear operators,the existence of positive solutions of boundary value problems is obtained by using the fixed point index theory and Guo-Krasnoselskii fixed point theorem.
作者 罗茜 许勇强 LUO Xi;XU Yongqiang(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou,Fujian 363000,China)
出处 《闽南师范大学学报(自然科学版)》 2022年第1期21-29,共9页 Journal of Minnan Normal University:Natural Science
基金 国家自然科学基金项目(11571159) 福建省自然科学基金(2017J01562)。
关键词 分数阶微分方程 边值问题 不动点定理 fractional differential boundary value fixed point theory
  • 相关文献

参考文献3

二级参考文献35

  • 1王学彬.两项分数阶微分方程在控制系统的应用[J].南平师专学报,2005,24(2):16-19. 被引量:8
  • 2王学彬.求解多项分数阶常微分方程的数值方法[J].南平师专学报,2006,25(4):14-19. 被引量:2
  • 3王学彬,刘发旺.分离变量法解三维的分数阶扩散-波动方程的初边值问题[J].福州大学学报(自然科学版),2007,35(4):520-525. 被引量:7
  • 4Feng, W.: On a m-point nonlinear boundary value problem. Nonlinear Analysis TMA, 30(6), 5369-5374(1997).
  • 5Ma, R.: Existence theorems for a second order m-point boundary value problem. J. Math. Anal. Appl.,211,545-555 (1997).
  • 6Stanek, S.: On some boundary value problems for second order functional differential equations. Nonlinear Analysi.s TMA, 28(3), 539-546 (1997).
  • 7Guo, D. J. and Lakshmikantham, V.: Nonlinear Problems in Abstract Cones, Academic Press, San Diego(1988).
  • 8Anuradha, V., Hai, D. D. and Shivaji, R.: Existence results for superlinear semipositone boundary value problems. Proc. Amer. Math. Soc., 124(3), 757-763 (1996).
  • 9Mawhin, J.: "Topological Degree Methods on Nonlinear Boundary Value Problems". NSF-CBMS Regional Conference Series in Math., Vol. 40, Amer. Math. Soc., Providence, RI (1979).
  • 10II'in, V. A. and Moiseev, E. I.: Nonlocal bomldary value problem of the second kind for a Sturm-Liouville operator. Differential Equations, 23(8), 979-987 (1987).

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部