期刊文献+

乘性误差模型参数估计及精度评定的Sterling插值方法 被引量:5

Sterling Interpolation Method for Parameter Estimation and Precision Estimation in Multiplicative Error Model
原文传递
导出
摘要 乘性误差模型加权最小二乘参数估值是观测值的非线性函数,观测值的权是加权最小二乘参数估值的非线性函数。已有的乘性误差模型参数估计方法理论上可以达到二阶无偏,但精度评定方法只能达到一阶精度,并且参数估计逐步的迭代过程使得参数及改正数的每一步估值都具有随机性,使得最终的参数估值与观测值为复杂的非线性关系。考虑到非线性迭代过程对加权最小二乘参数带来的影响,使用一种无需求导的Sterling插值方法求解参数估值的均值和标准差。模拟实验表明,当模型非线性较高时,考虑每次迭代的随机性对参数估值的影响可以得到更接近真值的参数估值,并且所提方法的精度评定可以达到二阶精度,验证了Sterling插值方法用于乘性误差模型参数估计及其精度评定的适用性和有效性。 Objectives: For multiplicative error model, the parameters estimated by weighted least squares (WLS) are nonlinear functions of observations, and the weights of observations are nonlinear functions of the estimated parameters. The existing parameter estimation methods of multiplicative error model can theoretically achieve second-order unbiased, but the precision of uncertainty can only achieve first-order unbiased. Therefore, a new method is used to improve the accuracy of uncertainty.Methods: The effect of nonlinear iterative processes on WLS parameters is considered, and the relationship between the estimated parameters and the observations in iterative WLS process is regarded as a nonlinear nested function. The derivative-free Sterling interpolation method with symmetric sampling is used to calculate the expectations of estimated parameters and the standard deviation. Results: From the analysis of two synthetic experiments, the following results are obtained:(1) Considering the impact of the randomness of each iteration on the parameter estimation, the proposed Sterling interpolation method can get better estimated parameters than the existing methods.(2) When the nonlinearity of model is high, the effectiveness of the Sterling interpolation method is more significant.(3) The uncertainty estimation method in this paper can achieve secondorder precision.Conclusions: The feasibility and effectiveness of the Sterling interpolation method for parameter estimation and precision estimation of multiplicative error model are verified.
作者 王乐洋 邹传义 WANG Leyang;ZOU Chuanyi(Faculty of Geomatics,East China Institute of Technology,Nanchang 330013,China;School of Geodesy and Geomatics,Wuhan University,Wuhan 430079,China)
出处 《武汉大学学报(信息科学版)》 EI CAS CSCD 北大核心 2022年第2期219-225,共7页 Geomatics and Information Science of Wuhan University
基金 国家自然科学基金(41874001,41664001,42174011)。
关键词 乘性误差模型 加权最小二乘 Sterling插值法 参数估计 精度评定 multiplicative error model weighted least squares Sterling interpolation parameter estimation precision estimation
  • 相关文献

参考文献5

二级参考文献50

  • 1杨峰,潘泉,梁彦,叶亮.多源信息空间配准中的UT变换采样策略研究[J].系统仿真学报,2006,18(3):713-717. 被引量:15
  • 2C. Oliver. Understanding Synthetic Aperture Radar Images. Artech House, Bostort/London, 1998.
  • 3A. P. Blake, D Blacknell, C. J. Oliver. High Resolution SAR Clutter Textural Analysis and Simulation. SPIE Vol. 2584, 101-108,1995.
  • 4Lance M. Kaplan, Analysis of Multiplicative Speckle Models for Template-Based SAR ATR, IEEE Trans. On AER. Vol. 37, No. 4, October,2001.
  • 5M. Thr, K. C. Chin,and J. W. Goodman,When is speckle noise multiplicative. Appl. Opt. , Vol. 21, 1982, 1157- 1159.
  • 6J. S. Salazar. Detection Schemes for Synthetic Aperture Radar Imagery Based On a Beta Prime Statistical Model, 1999.
  • 7Vassilis Anastassopoulos. High Resolution Radar Clutter Statistics. IEEE Transactions on AES VOL. 35, NO. 1, January 1999.
  • 8Ercan E. Kuruoglu, Josiane Zerubia. Modeling SAR Images With a Generalization of the Rayleigh Distribution. IEEE. 2004.
  • 9A. C. FRERY, C. C. F. Yanasse, and S. J. S. Sant' Anna, Ahrmative distributions for the muhiplicative model in SAR images,in Quantitative Remote Sens. Sci. Applicat. , Int. Geosci. Remote Sensing Symp. , Florence, Italy, July 10-14,1995,Vol. 1,169-171.
  • 10David Blaeknell,A Mixture Distribution Model for Correlated SAR Clutter, SPIE,Vol. 2958,1996,38-49.

共引文献23

同被引文献58

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部