期刊文献+

实验室条件下道路交通信号场景用例采集可行性研究

Feasibility Study on Acquiring Scene Cases of Road Traffic Signals in the Condition of Laboratory
下载PDF
导出
摘要 道路交通信号的准确识别关乎自动驾驶汽车的安全运行。开放或封闭道路条件下道路交通信号场景用例的参数不可控,实验室条件下可以灵活控制其各项参数,但限于实验室场地大小限制等因素,无法拍摄获得远距离的交通信号。本文通过理论分析和实地验证焦距、视场大小及拍摄距离的数学关系,提出了一种在实验室场地受限的条件下采用不同焦距镜头模拟不同距离下拍摄采集道路交通信号场景用例的方法,同时在实验室条件下改变道路交通信号参数并模拟不同距离进行场景用例采集。该方法能够满足实验室内灵活调节交通信号参数、快速获取大量场景用例的要求,丰富自动驾驶汽车对道路交通信号识别测试的内容。 Road traffic signals have a great influence on the safe operation of autonomous vehicles. The parameters of road traffic signals are uncontrollable on open or blocked roads, while parameters can be adjusted flexibly in the laboratory. However, shooting and acquiring the distant road traffic signals is limited by the size of laboratory. This paper proposes an approach to use camera lens with different focal lengths to simulate the acquisition of road traffic signals at different distances. Meanwhile, scene cases are acquired by adjusting parameters of road traffic signals and simulating different distances in the laboratory. The proposed approach can meet the requirements of adjusting parameters of road traffic signals flexibly and acquiring numerous scene cases quickly. Also, it can enrich the content of recognition and measurement of road traffic signals which aims at autonomous vehicles.
作者 郑嘉麒 马静洁 王正成 黄磊 ZHENG Jia-qi;MA Jing-jie;WANG Zheng-cheng;HUANG Lei(Traffic Management Research Institute of Ministry of Public Security)
出处 《中国标准化》 2022年第5期223-227,共5页 China Standardization
基金 中央级公益性科研院所基本科研业务费专项资金项目(项目编号:2021SJA01)资助。
关键词 自动驾驶 场景用例 道路交通信号 焦距 视场 拍摄距离 automatic pilot scene case road traffic signal focal length field of view shooting distance
  • 相关文献

参考文献5

二级参考文献59

  • 1夏候凯顺,陈善星,邬依林.基于双目云台相机的目标跟踪系统建模与仿真[J].系统仿真学报,2015,27(2):362-368. 被引量:6
  • 2刘玉梅,苏建,潘洪达,翟乃斌,杨秀坤.虚拟仪器技术在汽车性能测试中的应用[J].中国公路学报,2005,18(2):112-115. 被引量:20
  • 3王海涛.汽车道路强化腐蚀试验及评价方法[J].腐蚀与防护,2007,28(6):300-302. 被引量:16
  • 4Hwang T H,Joo I,Cho S L.Detection of traffic lights for vision-based car navigation systems[C]//First Pacific Rim Symposium on Image and Video Technology.Berlin:Springer-Verlag,2006:682-691.
  • 5Soetedjo A,Yamada K.Fast and robust traffic sign detection[C] //IEEE International Conference on Systems,Man and Cybernetics.USA:IEEE,2005:1341-1346.
  • 6Gao X W,Podladchikova L,Shaposhnikov D,et al.Recognition of traffic signs based on their colour and shape features extracted using human vision models[J].Journal of Visual Communication and Image Representation,2005,17(4):675-685.
  • 7Gong J W,Jiang Y H,Xiong G M,et al.The recognition and tracking of traffic lights based on color segmentation and CAMSHIFT for intelligent vehicles[C]//IEEE Intelligent Vehicles Symposium.USA:IEEE,2010:431-435.
  • 8Omachi M,Omachi S.Traffic light detection with color and edge information[C]//2009 2nd IEEE International Conference on Computer Science and Information Technology.USA:IEEE,2009:284-287.
  • 9Shen Y H,Ozguner U,Redmill K,et al.A robust video based traffic light detection algorithm for intelligent vehicles[C]//IEEE Intelligent Vehicles Symposium.Piscataway NJ,USA:IEEE,2009:521-526.
  • 10De Charette R,Nashashibi F.Real time visual traffic lights recognition based on spot light detection and adaptive traffic lights templates[C]// IEEE Intelligent Vehicles Symposium.Piscataway NJ,USA:IEEE,2009:358-363.

共引文献181

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部