期刊文献+

多因子贡献率权重的城市精细人口空间化方法:以北京市为例 被引量:7

Spatial method of urban fine population with multifactor contribution rate weight:case of Beijing
下载PDF
导出
摘要 以北京市作为研究区,以土地覆盖、河流道路、DEM、珞珈一号夜间灯光以及兴趣点各数据作为影响因子建立人口指标体系,针对人口空间化中多源数据权重确定方法复杂且主观性强的问题,提出以主成分分析法挖掘各项数据特征,以因子对指标评价体系的贡献率作为权重进行多因子加权融合,实现北京市30 m×30 m精细人口空间化.与Worldpop数据进行精度对比分析,结果表明:1)人口精细空间化结果的精度(R^(2)=0.85、E_(MR)为0.28)优于Worldpop数据的精度(R^(2)=0.67,E_(MR)为0.48);2)北京市人口主要分布在中心主城区内,且向外呈现波动性递减趋势,在外围出现多个郊区次中心,与兴趣点密度具有相似的空间分布;3)各类兴趣点因子被赋予了较高的权重,可作为北京人口空间分布的重要指示性因子.该研究方法可为其他城市精细人口空间化研究提供参考. The study of urban population spatialization in fine scale can help to analyze characteristics and influencing factors of population distribution,and provide data support for regional sustainable development.A population index system was established for Beijing with land cover data,river and road data,DEM data,night light data of Luojia-01 and point of interest data as influence factors.To solve the problem of complex and subjective method of determining weight of multi-source data in population spatialization,an objective and scientific principal component analysis method was proposed to mine data characteristics.Contribution rate of factors to the index evaluation system was used as weight to carry out multifactor weighted fusion,to realize fine spatialization of 30 m×30 m population in Beijing.The accuracy of population spatialization(R^(2)=0.85,E_(MR)=0.28)was found to be better than Worldpop data(R^(2)=0.67,E_(MR)=0.48).The population in Beijing was found mainly distributed in the main urban area in the center,showing a decreasing trend of volatility outward,with multiple suburban sub centers in the periphery,a spatial distribution similar to density of interest points.All kinds of interest factors were given high weight,to be used as important indicator of spatial distribution of the Beijing population.This method might provide some reference for the study of spatial population in other cities.
作者 董海燕 潘耀忠 朱秀芳 王金云 DONG Haiyan;PAN Yaozhong;ZHU Xiufang;WANG Jinyun(State Key Laboratory of Remote Sensing Science,Jointly Sponsored by Beijing Normal University and Institute of Remote Sensing and Digital Earth of Chinese Academy of Sciences,100875,Beijing,China;School of Geographical Sciences,Qinghai Normal University,810016,Xining,Qinghai,China;Institute of Remote Sensing Science and Engineering,Faculty of Geographical Sciences,Beijing Normal University,100875,Beijing,China)
出处 《北京师范大学学报(自然科学版)》 CAS CSCD 北大核心 2022年第1期135-142,共8页 Journal of Beijing Normal University(Natural Science)
基金 “十三五”国家重点研发专项资助项目(2018YFC1504603) 国家高分辨率对地观测系统(民用部分)重大资助项目(E03071112)。
关键词 人口空间化 贡献率权重 多源数据融合 珞珈一号 兴趣点 population spatialization contribution rate weight multi-source data fusion Luojia-01 point of interest
  • 相关文献

参考文献29

二级参考文献379

共引文献750

同被引文献108

引证文献7

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部