摘要
针对经典的协同过滤推荐算法的一系列不足,如用户冷启动、商品评分稀疏性以及推荐精度不高,文章提出基于截断奇异值分解(TSVD)的协同过滤推荐算法。使用TSVD技术对稀疏矩阵进行降维处理,利用Jaccard相似度算法计算用户间相似度,提高推荐精度。实验结果显示,基于截断奇异值分解(TSVD)的协同过滤算法体现良好的推荐质量及预测精度。
出处
《电脑知识与技术》
2022年第4期75-76,79,共3页
Computer Knowledge and Technology
基金
嘉兴学院2020年度校级SRT计划项目(项目编号:8517203331)。