摘要
This work employed an inductively coupled plasma wind tunnel to study the dynamic oxidation mechanisms of carbon fiber reinforced SiC matrix composite(C_(f)/SiC)in high-enthalpy and high-speed plasmas.The results highlighted a transition of passive/active oxidations of SiC at 800–1600℃and 1–5 kPa.Specially,the active oxidation led to the corrosion of the SiC coating and interruption of the SiO_(2) growth.The transition borders of active/passive oxidations were thus defined with respect to oxidation temperature and partial pressure of atomic O in the high-enthalpy and high-speed plasmas.In the transition and passive domains,the SiC dissipation was negligible.By multiple dynamic oxidations of C_(f)/SiC in the domains,the SiO_(2) thickness was not monotonously increased due to the competing mechanisms of passive oxidation of SiC and dissipation of SiO_(2).In addition,the mechanical properties of the SiC coating/matrix and the C_(f)/SiC were maintained after long-term dynamic oxidations,which suggested an excellent thermal stability of C_(f)/SiC serving in thermal protection systems(TPSs)of reusable hypersonic vehicles.
基金
This work was supported by the National Natural Science Foundation of China(Nos.11902333 and 51972027)
the CARDC Fundamental and Frontier Technology Research Fund.