期刊文献+

自适应AP聚类算法研究 被引量:4

Research on adaptive AP clustering algorithm
下载PDF
导出
摘要 偏向参数和阻尼因子是影响AP聚类算法聚类效果的两个重要参数,但他们均取固定值。随着数据量的改变,原有参数取值不能使算法聚类结果达到最优。鉴此,本文提出自适应AP聚类算法,当数据量发生改变时,自动调整并获取最优的偏向参数和阻尼因子,最终得到最优聚类结果。与原来算法相比,改进后的算法能自动消除震荡,还可获取最优聚类结果,提高聚类结果的准确性和算法快速性。通过人造数据集和Iris数据集实验,证明了自适应AP聚类算法的有效性。 Bias parameter and damping factor are two important parameters that affect the clustering effect of AP clustering algorithm,but they both take fixed values.As the amount of data changes,the original parameter values cannot make the algorithm clustering result optimal.In this paper,an adaptive AP clustering algorithm is proposed.When the amount of data changes,it automatically adjusts and obtains the optimal bias parameters and damping factors,and finally obtains the optimal clustering result.Compared with the original algorithm,the improved algorithm can automatically eliminate the vibration,and can also obtain the optimal clustering results,which improves the accuracy of the clustering results and the speed of the algorithm.Experiments on artificial datasets and Iris datasets demonstrate the effectiveness of the adaptive AP clustering algorithm.
作者 赖健琼 Lai Jianqiong(School of Intelligent Technology,Tianfu College of Swufe,Mianyang,Sichuan 621000,China)
出处 《计算机时代》 2022年第4期38-42,共5页 Computer Era
关键词 AP聚类 自适应AP聚类 偏向参数 阻尼因子 AP clustering adaptive AP clustering bias parameter damping factor
  • 相关文献

参考文献7

二级参考文献57

  • 1FREY B J, DUECK D. Clustering by passing messages between data points [ J ]. Science, 2007, 315 (5814) :972-976.
  • 2LAZIC N, GIVONI Inmar E, AARABI Parham, et al. FLOSS : Facility location for subspace segmentation[ C ]// Proceedings of 12th International Conference on Computer Vision (ICCV). Kyoto: IEEE Press, 2009: 825-832.
  • 3LAZIC Nevena, FREY Brendan J,AARABI Parham. Solving the uncapacitated facility location problem using message passing algorithms[ C]// Proceedings of 13th International Conference on Artificial Intelligence and Statistics ( AISTATS ). Sardinia: Microtome Publishing, 2010: 429-436.
  • 4DUECK D, FREY B J. Non-metric affinity propagation for unsupervised image categorization [ C ]// Proceedings of 11th International Conference on Computer Vision (ICCV). Rio de Janeiro: IEEE Press, 2007- 1-8.
  • 5GIVONI I E, FREY B J. Semi-supervised affinity propagation with instance-level constraints [ C ]//Proceedingsof 12th International Conference on Artificial Intelligence and Statistics ( AISTATS ). Florida: Microtome Publishing, 2009 : 161-168.
  • 6DUECK D, FREY B J, JOJIC N, et al. Constructing treatment portfolios using affinity propagation [ C ]//Proceedings of International Conference on Research in Computational Molecular Biology ( RECOMB ). Singapore: Springer, 2008: 360- 371.
  • 7CLERC Maurice. The swarm & the queen towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of Congress on Evolutionary Computation, Washington: IEEE Press, 1999: 1951-1957.
  • 8Frey B J, Dueck D. Clustering by passing messages between data points. Science, 2007, 315(5814): 972-976
  • 9Kelly K. Affinity program slashes computing times [Online], available: http://www.news.utoronto.ca/bin6/070215-2952. asp. October 25, 2007
  • 10Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology, 2002, 3(7): 1-21

共引文献333

同被引文献28

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部