期刊文献+

基于特征检测量的XLPE电缆绝缘老化寿命预测方法 被引量:15

XLPE cable insulation aging based on feature detection life prediction method
下载PDF
导出
摘要 针对XLPE电缆绝缘老化影响电力系统稳定运行的问题,以绝缘状态检测项目为基础,提出基于多个特征检测量的偏最小二乘(PLS)老化时间预测模型。首先针对现有的数据样本较小及模型中存在的多重共线性问题,引入最小二乘支持向量回归机(LSSVR)优化模型主成分得分向量;然后利用最新得分向量建立LSSVR-PLS老化时间预测模型;最后利用回归参数T检验法对比检验了模型非线性处理能力,对杭州某区域多根110 kV XLPE电缆样品进行预测分析,结果表明改进模型适用于电缆检测量小样本数据的处理,能够消除原始模型存在的多重共线性问题,并且具有更高的预测精准度,对电缆的运维及电网改造具有重要的指导意义。 XLPE insulation aging affects the operation of the power system.Based on the insulation state detection project,this paper proposes a PLS aging time prediction model based on multiple feature detection quantities.Aiming at the small data collected and the multi-collinearity problem in the model,the least squares support vector machine(LSSVR)is introduced to optimize the model principal component score vector.Then,the LSSVR-PLS aging time model is established utilizing the new score vector.Finally,the nonlinear processing ability is compared and tested by a T test and the 110 kV XLPE cable samples in a certain area of Hangzhou is considered.It is shown that the improved model is suitable for the processing of small sample data of cable detection,which can eliminate the multi-collinearity problem existing in the original model and achieve a higher prediction accuracy.The proposed research provides an important guiding significance for the cable operation and maintenance and the transformation of power grid.
作者 李登淑 王昕 吴健儿 赵明 姚广元 LI Dengshu;WANG Xin;WU Jianer;ZHAO Ming;YAO Guangyuan(School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090,China;Center of Electrical & Electronic Technology, Shanghai Jiao Tong University, Shanghai 200240,China;Hangzhou Power Supply Company Cable Inspection Room Zhejiang Electric Power Grid Co., Ltd.,Hangzhou 310000,China)
出处 《电力科学与技术学报》 CAS 北大核心 2022年第1期168-177,共10页 Journal of Electric Power Science And Technology
基金 国网浙江省电力有限公司科技项目(5211HZ17000B) 国家自然科学基金(61673268)。
关键词 XLPE电缆 特征检测量 老化时间 多重共线性 LSSVR-PLS预测模型 XLPE cable feature detection aging time multicollinearity LSSVR-PLS prediction model
  • 相关文献

参考文献12

二级参考文献130

共引文献201

同被引文献256

引证文献15

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部