期刊文献+

基于特征融合的三维人脸点云质量判断 被引量:2

Quality judgment of 3D face point cloud based on feature fusion
下载PDF
导出
摘要 针对使用双目结构光扫描仪获取的三维人脸点云,提出了一种特征融合网络(FFN)来完成人脸点云质量判断任务。首先,对三维点云预处理切割出人脸面部区域,使用点云和对应的二维平面投影得到的图像作为输入;其次,分别训练用于点云学习的动态图卷积神经网络(DGCNN)和ShuffleNet两个模块;然后,提取出两个网络模块的中间层特征进行特征融合,对整个网络进行微调;最后,使用三层全连接层,实现三维人脸点云的5分类(优秀、普通、条纹、毛刺、变形)。所提FFN的分类正确率为83.7%;分类正确率比ShuffleNet提升了5.8%,比DGCNN提升了2.2%。实验结果表明,加权融合二维图像特征和点云特征可以达到不同特征之间的优势互补效果。 A Feature Fusion Network(FFN)was proposed to judge the quality of 3D face point cloud acquired by binocular structured light scanner.Firstly,the 3D point cloud was preprocessed to cut out the face area,and the image obtained from the point cloud and the corresponding 2D plane projection was used as the input.Secondly,Dynamic Graph Convolutional Neural Network(DGCNN)and ShuffleNet were trained for point cloud learning.Then,the middle layer features of the two network modules were extracted and fused to fine-tune the whole network.Finally,three full connected layers were used to realize the five-class classification of 3D face point cloud(excellent,ordinary,stripe,burr,deformation).The proposed FFN achieved the classification accuracy of 83.7%,which was 5.8% higher than that of ShufflNet and 2.2% higher than that of DGCNN.The experimental results show that the weighted fusion of two-dimensional image features and point cloud features can achieve the complementary effect between different features.
作者 高工 杨红雨 刘洪 GAO Gong;YANG Hongyu;LIU Hong(National Key Laboratory of Fundamental Science on Synthetic Vision(Sichuan University),Chengdu Sichuan 610065,China;College of Computer Science,Sichuan University,Chengdu Sichuan 610065,China)
出处 《计算机应用》 CSCD 北大核心 2022年第3期968-973,共6页 journal of Computer Applications
基金 四川省重大科技专项(2019ZDZX0039)。
关键词 人脸点云 点云特征 二维图像 加权融合 质量判断 face point cloud point cloud feature two-dimensional image weighted fusion quality judgment
  • 相关文献

参考文献2

二级参考文献15

  • 1韩崇昭,等.多源信息融合[M].北京:电子工业出版社,2007.
  • 2David L.Hall,James Llinas.An Introduction to Multisensor Data Fusion[C].Invited Paper,Proc.of the IEEE,Vol.85,No.l,Jan 1997:6-23.
  • 3Yang J.,Yang J.Y.,Zhang D.,Lu J.F.Feature fusion Parallel strategy vs.serial strategy.Pattern Recognition[J] ,2003,Vol.36(6):1369-1381.
  • 4Wang Dawei,Ge Wei,Wang Yan jie.Using BBPSO for Feature Select in Feature-Level Fusion Target Recognition[C].4thIEEE conference on industrial electronics and applications,Xi'an,China,May.2009:1-4.
  • 5Xuguang Zhang,at el..Integrated Intensity,Orientation Code and Spatial Information for Robust Tracking[C].ICIEA 2007:1-4.
  • 6Fabien Scalzo,George Bcbis,Mircea Nicolescu,Leandro Loss.Evolutionary Learning of Feature Fusion Hierarchies[C].IEEE ICPR2008,Dec.2008:1-4.
  • 7王大伟,陈浩,王延杰.核典型相关分析的融合人脸识别算法[J].激光与红外,2009,39(11):1241-1245. 被引量:4
  • 8余凯,贾磊,陈雨强,徐伟.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804. 被引量:611
  • 9刘建伟,刘媛,罗雄麟.玻尔兹曼机研究进展[J].计算机研究与发展,2014,51(1):1-16. 被引量:71
  • 10金林鹏,董军.面向临床心电图分析的深层学习算法[J].中国科学:信息科学,2015,45(3):398-416. 被引量:37

共引文献1760

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部