期刊文献+

华北南部重污染城市周边区域二次气溶胶的化学特征及来源解析 被引量:20

Chemical Characteristics and Sources of Atmospheric Aerosols in the Surrounding District of a Heavily Polluted City in the Southern Part of North China
原文传递
导出
摘要 为探究华北南部地区重污染城市邯郸市北部地区冬季大气颗粒物的化学组分及来源,于2020年11月23日至12月12日采集了PM1和PM_(2.5)样品并进行了分析.观测期间日平均ρ(PM1)和ρ(PM_(2.5))分别为114.53μg·m^(-3)和124.25μg·m^(-3),PM1/PM_(2.5)比值的变化范围为83.3%~95.3%,明显高于京津冀其他城市,表明邯郸地区细颗粒物尤其是亚微米颗粒物污染严重.与清洁天相比,重污染期间PM1中SNA(SO_(4)^(2-)、NO_(3)-和NH_(4)^(+))增加14.5%,PM_(2.5)中SNA增加15.2%,尤其氮氧化率(NOR)在重污染天增长3倍;随着污染程度的加深,PM1和PM_(2.5)中二次有机碳(SOC)占比增加22.0%和12.5%,SOC易在粒径小的颗粒物中聚集,而PM1中一次有机碳(POC)和元素碳(EC)占比下降15.4%和6.6%,PM_(2.5)中POC和EC占比下降8.2%和4.3%.上述结果表明二次形成对颗粒物重污染具有重要贡献.随着污染程度的加重,颗粒物中液态含水量增加,硫氧转化率(SOR)和氮氧转化率(NOR)均升高,表明液相化学反应对二次无机盐的生成具有重要贡献.随着污染程度的加深,无机元素呈上升趋势;无机元素中Se、As、Pb和Zn富集程度较高.根据主成分分析法(PCA)源解析结果,二次源、工业源、机动车源和生物质燃烧源是PM1和PM_(2.5)主要的来源.潜在源贡献因子分析(PSCF)结果表明,SO_(4)^(2-)、NO_(3)-、EC、OC和无机元素的高值区域都主要来自观测区域的北方向和西南方向. In order to explore the chemical composition and source profiles of atmospheric particulate matter in winter in the northern area of Handan,a heavily polluted city in the southern part of North China,PM1and PM_(2.5)samples were collected and analyzed from November 23 to December 12,2020.During the observation period,the daily averageρ(PM1)andρ(PM_(2.5))were 114.53μg·m^(-3)and 124.25μg·m^(-3),respectively,and the ratio of PM1/PM_(2.5)was 83.3%-95.3%,which was significantly higher than those of other cities in the Beijing-Tianjin-Hebei region,indicating that air pollution of fine particulate matter,especially sub-micron particulate matter,was more serious in Handan.Compared with that during clean days,SNA(SO_(4)^(2-),NO_(3)-,and NH_(4)^(+))in PM1increased by 14.5%during heavy pollution,and SNA in PM_(2.5)increased by15.2%;the nitrogen oxidation rate(NOR)in particular increased by three times on heavy pollution days.With the deepening of pollution,the proportion of secondary organic carbon(SOC)in PM1and PM_(2.5)increased by 22.0%and 12.5%,respectively.SOC tended to accumulate in small particles,whereas the proportion of primary organic carbon(POC)and elemental carbon(EC)in PM1decreased by 15.4%and 6.6%,and the POC and EC in PM_(2.5)decreased by 8.2%and 4.3%,respectively.The above results indicated that secondary formation played an important role in the heavy pollution of particulate matter.With the aggravation of air pollution,the liquid water content of the particles increased,and both the sulfur oxidation ratio(SOR)and nitrogen oxidation ratio(NOR)increased,indicating that the aqueous phase chemical reaction made an important contribution to the formation of secondary inorganics.With the deepening of pollution,inorganic elements were on the rise;Se,As,Pb,and Zn were highly enriched in inorganic elements.The results of principal component analysis(PCA)showed that secondary formation,industrial emissions,vehicle exhaust,and biomass burning emissions were the main sources of particulate pollutants.The results of potential source contribution factor analysis(PSCF)showed that the high value areas of SO_(4)^(2-),NO_(3)-,EC,OC,and inorganic elements were mainly from the north and southwest directions of the observation area.
作者 任秀龙 胡伟 吴春苗 胡偲豪 高娜娜 张崇崇 岳亮 王金喜 樊景森 牛红亚 REN Xiu-long;HU Wei;WU Chun-miao;HU Si-hao;GAO Na-na;ZHANG Chong-chong;YUE Liang;WANG Jin-xi;FAN Jing-sen;NIU Hong-ya(School of Earth Sciences and Engineering,Hebei University of Engineering,Handan 056038,China;School of Earth System Science,Tianjin University,Tianjin 300072,China;Ecological Environment Monitoring Center of Handan City,Hebei Province,Handan 056001,China)
出处 《环境科学》 EI CAS CSCD 北大核心 2022年第3期1159-1169,共11页 Environmental Science
基金 国家自然科学基金项目(41807305) 河北省杰出青年科学基金项目(D2018402149) 河北省自然科学基金项目(D2021402004) 河北省高校百名优秀创新人才支持计划项目(SLRC2019021) 河北省重点研发计划项目(19273705D) 天津市自然科学基金绿色通道项目(18JCYBJC42200)。
关键词 重污染 PM_(1) PM_(2.5) 来源解析 后向轨迹 潜在源区 heavy air pollution PM1 PM_(2.5) source apportionment backward trajectory potential source
  • 相关文献

参考文献11

二级参考文献196

共引文献306

同被引文献377

引证文献20

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部