摘要
Sodium/Potassium(Na/K)metal anodes have been considered as the promising anodes for next-generation Na/K secondary batteries owing to their ultrahigh specific capacity,low redox potential and low cost.However,their practical application is still hampered due to unstable solid electrolyte interphase,infinite volume change,and dendrite growth.Herein,we design a 3D-Na_(3)Bi/3D-K_(3)Bi alloy host which enables the homogeneous and heterogeneous nucleation growth of Na/K metal.The unique structure with periodic alternating of electron and ion conductivity improves the mass transfer kinetics and prevents the volume expansion during cycling.Meanwhile,the sodiophilicity of Na_(3)Bi/potassiophilicity of K_(3)Bi framework can avoid dendritic growth.Cycling lifespans over 700 h with 1 mAh cm^(−2)for 3D-Na_(3)Bi@Na electrode and about 450 h with 1 mAh cm^(−2)for 3D-K_(3)Bi@K electrode are achieved,respectively.3D-Na_(3)Bi@Na||Na_(3)V_(2)(PO_(4))3 full battery shows sustainable cycle performance over 400 cycles.This design provides a simple but effective approach for achieving safety of sodium/potassium metal anodes.
基金
This work was supported by the National Natural Science Foundation of China(Nos.51925207,U1910210,51872277,22005292,52002083)
the National Synchrotron Radiation Laboratory(KY2060000173)
the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Grant.YLU-DNL Fund 2021002)
the Fundamental Research Funds for the Central Universities(WK2060140026).