期刊文献+

能量产消者的分层控制策略研究

Research on Hierarchical Control Strategy for Energy Prosumers
下载PDF
导出
摘要 随着屋顶光伏、风机等可再生能源的大量普及,未来配电网中将会出现越来越多的能量产消者。为提高对可再生能源的利用率和实现对能量产消者的电能管理,提出一种基于模糊控制理论的能量产消者分层控制策略。具体是将分布式电源出力和负荷功率、储能荷电状态值SOC(state of charge)及实时电价等作为模糊控制的输入量,经模糊推理、解模糊,确定能量产消者的运行模式。通过在Matlab/Simulink中搭建模型进行仿真,验证了该分层控制策略能够实现电能的合理分配以及提高可再生能源的利用率。 With the wide spread of rooftop photovoltaic(PV),wind turbines and other renewable power sources,more and more energy prosumers will appear in distribution network in the future.To improve the utilization rate of renewable energy and realize the power management of energy prosumers,a hierarchical control strategy for energy prosumers is proposed,which is based on the fuzzy control theory.Specifically,the output and load power of distributed generations,state of charge of the energy storage system,and real-time electricity price are taken as input variables of the fuzzy controller,and the operation mode of the energy prosumer is determined through the output from the fuzzy controller.A simulation model is built in Matlab/Simulink,and simulation results show that the proposed hierarchical control strategy can realize a reasonable distribution of power and improve the utilization rate of renewable power.
作者 吕达 葛志峰 柏帆 田斌 仇晓寅 顾建华 Lv Da;GE Zhifeng;BAI Fan;TIAN Bin;QIU Xiaoyin;GU Jianhua(Ninghai County Yancangshan Electric Power Construction Co.,Ltd,Ningbo 315600,China)
出处 《电源学报》 CSCD 北大核心 2022年第2期137-144,共8页 Journal of Power Supply
关键词 能量产消者 分层控制 模糊控制 分布式电源 energy prosumer hierarchical control fuzzy control distributed generation
  • 相关文献

参考文献9

二级参考文献172

  • 1白志红,阮新波,徐林.基于LCL滤波器的并网逆变器的控制策略[J].电工技术学报,2011,26(S1):118-124. 被引量:29
  • 2Vovos P N, Kiprakis A E, Wallace A R, et al. Centralized and distributed voltage control: impact on distributed generation penetration[J]. IEEE Transactions on Power Systems, 2007, 22(1): 476-483.
  • 3Katiraei F, Iravani M strategies for a microgrid R. Power management with multiple distributed generation units[J]. IEEE Transactions on Power Systems, 2006, 21(4): 1821-1831.
  • 4Gil H A, Joos G. Customer-owned back-up generators for energy management by distribution utilities[J]. IEEE Transactions on Power Systems, 2007, 22(3): 1044-1050.
  • 5Hiscock N, Hazel T G, Hiscock J. Voltage regulation at sites with distributed generation[J]. IEEE Transactions on Industry Applications, 2008, 44(2): 445-454.
  • 6Jewell W T, Unruh T D. Limits on cloud-induced fluctuation in photovoltaic generation[J]. IEEE Transactions on Energy Conversion, 1999, 5(1): 8-14.
  • 7Mellit A, Arab A H, Khorissi N, et al. An ANFIS-based forecasting for solar radiation data from sunshine duration and ambient temperature[C]. IEEE Power Engineering Society General Meeting, 2007.
  • 8Sera D, Teodorescu R, Hantschel J, et al. Optimized maximum power point tracker for fast-changing environmental conditions[J]. IEEE Transactions on Industrial Electronics, 2008, 55(7): 2629-2637.
  • 9Kem E C, Culachenski E M, Ken G A. Cloud effects on distributed photovoltaic generation: slow transients at the gardner, massachusetts photovoltaic experiment[J] IEEE Transactions on Energy Conversion, 1989, 4(2): 184-190.
  • 10Chakraborty S, Weiss M D, Simoes M G. Distributed intelligent energy management system for a single-phase high-frequency AC microgrid[J]. IEEE Transactions on Industrial Electronics, 2007, 54(1): 97-109.

共引文献370

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部