摘要
研究了二维广义Camassa-Holm-Kadomtsev-Petviashvili(CH-KP)方程的柯西问题。通过先验估计、数学连续性归纳法,并结合逼近方法与紧性理论,建立了广义CH-KP方程唯一解的局部适定性。其创新点在于将二维CH-KP方程的研究结果推广到广义CH-KP方程解的局部适定性。进一步研究了广义CH-KP方程解的爆破准则及相关定理。
The main research of this paper is the Cauchy problem of the two-dimensional generalized Camassa-Holm-Kadomtsev-Petviashvili(CH-KP)equation.Through a priori estimation,the bootstrap method,a combination of approximation methods and compactness theory,the local well-posedness of the unique solution of the generalized CH-KP equation is established.Its innovative point lies in extending the research results of the two-dimensional CH-KP equation to the local well-posedness of the solution of the generalized CH-KP equation.Furthermore,the blow-up criterion and related theorems of the solution of the generalized CH-KP equation are studied.
作者
王佳敏
可雪丽
臧爱彬
WANG Jiamin;KE Xueli;ZANG Aibin(Department of Mathematics, Northwest University, Xi′an 710127, China;School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China;Center of Applied Mathematics, School of Mathematics and Computer Science, Yichun University, Yichun 336000, China)
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第2期298-317,共20页
Journal of Northwest University(Natural Science Edition)
基金
国家自然科学基金(11931013,11771382)。