期刊文献+

隐空间特征增强自标记半监督SVM分类新方法 被引量:4

A New Method of Hidden Space Feature Augmentation for Self-labeled Semi-supervised SVM Classification
下载PDF
导出
摘要 利用大量未标签样本和少量已标签样本共同训练一个有效的分类器是半监督学习方法的优势,自训练半监督学习方法因其简单且有效的特性而被广泛使用。文章提出基于隐空间特征增强的自训练半监督支持向量机分类学习方法,该方法首先将原空间已标签数据样本和大量无标签数据样本映射到同一隐空间,构建特征增强空间,在此特征增强空间结合概率密度进行自标记半监督SVM学习,以提高分类器的准确性和鲁棒性。UCI数据集上的实验证明,所提算法比传统的自训练学习算法具有更好的性能。 It is an advantage of semi-supervised learning method to train an effective classifier with a large number of unlabeled samples and a small number of labeled samples. The self-training semi-supervised learning method is widely used because of its simple and effective characteristics. This paper proposes a self-training semi-supervised support vector machine(SVM) classification learning method based on hidden space feature augmentation. This method firstly maps labeled data samples and a large number of unlabeled data samples in the original space to the same hidden space to construct a feature augmentation space. Based on this feature augmentation space, further self-training semi-supervised SVM learning is performed combined with probability density to improve the accuracy and robustness of the classifier. Experiments on the UCI dataset prove that the proposed algorithm has better performance than the traditional self-training learning algorithms.
作者 许敏 Xu Min(School of Internet of Things Technology,Wuxi Institute of Technology,Wuxi Jiangsu 214121,China)
出处 《统计与决策》 CSSCI 北大核心 2022年第7期11-15,共5页 Statistics & Decision
基金 国家自然科学基金资助项目(61702225) 江苏省高等学校自然科学研究资助项目(18KJB520048)。
关键词 特征增强 半监督学习 自训练 SVM 密度估计 feature augmentation semi-supervised learning self-training SVM density estimation
  • 相关文献

参考文献3

二级参考文献1

  • 1[美]阿佛里耳(M·Avriel) 著,李元熹等.非线性规划[M]上海科学技术出版社,1979.

共引文献181

同被引文献48

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部