期刊文献+

New electron-donating segment to develop thermally activated delayed fluorescence emitters for efficient solution-processed non-doped organic light-emitting diodes

原文传递
导出
摘要 Thermally activated delayed fluorescent(TADF) materials capable of efficient solution-processed nondoped organic light-emitting diodes(OLEDs) are of important and practical significance for further development of OLEDs. In this work, a new electron-donating segment, 2,7-di(9 H-carbazol-9-yl)-9,9-dimethyl-9,10-dihydroacridine(2 Cz-DMAC), was designed to develop solution-processable non-doped TADF emitters. 2 Cz-DMAC can not only simultaneously increase the solubility of compounds and suppress harmful aggregation-caused quenching, but also efficiently broaden the delocalization of the highest occupied molecular orbital and promote the reverse intersystem crossing process. Three new TADF emitters, 2-(2,7-di(9 H-carbazol-9-yl)-9,9-dimethylacridin-10(9 H)-yl)dibenzo[b,d]thiophene 5,5-dioxide(2 Cz-DMAC-BTB), 2-(2,7-di(9 H-carbazol-9-yl)-9,9-dimethylacridin-10(9 H)-yl)-9 H-thioxanthen-9-one(2 Cz-DMAC-TXO), 2-(2,7-di(9 H-carbazol-9-yl)-9,9-dimethylacridin-10(9 H)-yl)thianthrene 5,5,10,10-tetraoxide(2 Cz-DMAC-TTR), were developed by using 2 Cz-DMAC segment as the electron-donor. As anticipated, the solution-processed non-doped OLEDs employing 2 Cz-DMAC-BTB, 2 Cz-DMAC-TXO and 2 CzDMAC-TTR as the emitters respectively exhibited green, orange and red emissions with maximum external quantum efficiencies of 14.0%, 6.6% and 2.9%. These results successfully demonstrate the feasibility and convenience of developing efficient solution-processable non-doped TADF emitters based on 2 CzDMAC segment.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第2期1110-1115,共6页 中国化学快报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos.51773029,52073040 and 51821002) the Fundamental Research Funds for the Central Universities (No.ZYGX2016Z010) the International Cooperation and Exchange Project of Science and Technology Department of Sichuan Province (No.2019YFH0057)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部