期刊文献+

共存分析与比较政治学研究 被引量:2

Coincidence Analysis and Comparative Politics Research
原文传递
导出
摘要 组态比较分析集合定性与定量研究的方法论优势,成为比较政治学研究的重要发展趋势。共存分析作为定性比较分析发展的进阶因果组态分析方法,是解释案例要素组态与结果之间因果结构的重要探索性工具。共存分析以中小样本案例为研究对象,基于集合论与布尔代数理论,关注复杂社会现象的因果关系,运用因果建模定制的优化算法,通过前提条件、因果假设、核心算法和模型检验等环节,分析多元组态因果链条机制和共同原因结构。共存分析应用于比较政治学领域研究,通过维护研究对象一致性和覆盖性的阈值边界,具有超越定性比较分析的较强适用性与解释力。通过对共存分析的评价与引介,可以推动比较政治学的复杂因果机制研究,成为具有解释张力的新范式。 Configuration comparative analysis sets the methodological advantages of qualitative and quantitative research,which has become an important development trend of comparative politics research.Coincidence analysis,as a causal configuration analysis method for advanced development of qualitative comparative analysis,is an important exploratory tool to explain the causal structure between the case element configuration and the result.Coincidence analysis takes small and medium sample cases as the research object,based on set theory and Boolean algebra theory,pays attention to the causal relationship of complex social phenomena,uses optimized algorithms for causal modeling,and analyze the mechanism of multi-configuration causal chain and the structure of common cause through preconditions,causal assumptions,core algorithms,and model testing.Coincidence analysis is applied to research in the field of comparative politics.By maintaining the threshold boundary of the consistency and coverage of research objects,it has strong applicability and explanatory power beyond qualitative comparative analysis.Through the evaluation and introduction of coincidence analysis,the research on the complex causal mechanism of comparative politics can be promoted and become a new paradigm with explanatory tension.
作者 高进 霍丽婷 Gao Jin;Huo Liting
出处 《政治学研究》 CSSCI 北大核心 2022年第1期129-141,M0007,共14页 CASS Journal of Political Science
关键词 共存分析 定性比较分析 因果组态 比较政治学 coincidence analysis qualitative comparative analysis causal configuration comparative politics
  • 相关文献

参考文献10

二级参考文献158

共引文献1937

同被引文献48

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部