期刊文献+

Automatic Modulation Recognition Based on CNN and GRU 被引量:10

原文传递
导出
摘要 Based on a comparative analysis of the Long Short-Term Memory(LSTM)and Gated Recurrent Unit(GRU)networks,we optimize the structure of the GRU network and propose a new modulation recognition method based on feature extraction and a deep learning algorithm.High-order cumulant,Signal-to-Noise Ratio(SNR),instantaneous feature,and the cyclic spectrum of signals are extracted firstly,and then input into the Convolutional Neural Network(CNN)and the parallel network of GRU for recognition.Eight modulation modes of communication signals are recognized automatically.Simulation results show that the proposed method can achieve high recognition rate at low SNR.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第2期422-431,共10页 清华大学学报(自然科学版(英文版)
基金 partially supported by Major Scientific and Technological Achievements Transformation Project of Heilongjiang Province in 2019(No.CG20A007)。
  • 相关文献

参考文献2

二级参考文献1

共引文献24

同被引文献50

引证文献10

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部