期刊文献+

基于HVCE-RBFNN的矿区地表三维形变监测研究 被引量:2

3D Surface Deformation Monitoring of Mining Areas Based on HVCE-RBFNN Method
下载PDF
导出
摘要 提出一种融合赫尔默特方差分量估计和径向基函数神经网络(HVCE-RBFNN)的三维形变计算方法,结合GNSS和InSAR监测数据,解算甘肃省金昌市金川西二采矿区的地表三维形变场。结果表明,基于HVCE-RBFNN方法获取的三维形变结果精度高于传统方法,其东西向、南北向和垂直向的均方根误差(RMSE)分别为20.85 mm、7.41 mm和34.47 mm,3个方向的最大形变量分别为228 mm、300 mm和193 mm,采空区形变空间分布符合开采沉陷规律。 We propose a 3D deformation fusion method based on Helmert variance component estimation(HVCE)and radial basis function neural network(RBFNN),and fuse the data of GNSS and InSAR monitoring to obtain the 3D surface deformation field of Jinchuan West Second mining area in Jinchang,Gansu.The results show that the accuracy of 3D deformation fields obtained by HVCE-RBFNN method are higher than that obtained by traditional methods,and the RMSE of east-west direction,north-south direction and vertical direction is 20.85 mm,7.41 mm and 34.47 mm,respectively.The maximum deformation values in three directions are 228 mm,300 mm and 193 mm,respectively.The spatial distribution of goaf deformation conforms to the law of mining subsidence.
作者 周文韬 张文君 缪骏懿 申锐 訾应昆 ZHOU Wentao;ZHANG Wenjun;MIAO Junyi;SHEN Rui;ZI Yingkun(School of Environment and Resource,Southwest University of Science and Technology,59 Mid-Qinglong Road,Mianyang 621010,China;Mianyang Science and Technology City Division,National Remote Sensing Center of China,59 Mid-Qinglong Road,Mianyang 621010,China;Sichuan Space Remote Sensing and Smart Mapping Technology Co Ltd,389 Fujin Road,Mianyang 621010,China)
出处 《大地测量与地球动力学》 CSCD 北大核心 2022年第5期520-525,共6页 Journal of Geodesy and Geodynamics
基金 国家重点研发计划(2018YFC150540202) 国家自然科学基金(41871174)。
关键词 GNSS INSAR HVCE-RBFNN 三维形变 开采沉陷 GNSS InSAR HVCE-RBFNN 3D deformation mining subsidence
  • 相关文献

参考文献7

二级参考文献62

共引文献584

同被引文献13

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部