期刊文献+

基于多尺度CLG光流法的多目标检测方法 被引量:2

Multi-target Detection Method Based on Multi-scale CLG Optical Flow Method
下载PDF
导出
摘要 多目标检测是计算机视觉中一个重要的研究方向,如何才能准确地检测目标在军事、生活、工业等方面都有着极为重要的研究意义。针对传统光流法在目标检测中对噪声鲁棒性较差的问题,为了提高算法对噪声的鲁棒性,本文将CLG光流法与多尺度的思想相结合。多尺度的主要思想是建立一个图像金字塔,由粗到精地计算光流向量,并在此基础上将L2范数的平方改为L1范数。实验结果表明,改进后的多尺度CLG光流算法相对于原始CLG光流算法有更好的整体效果,说明多尺度CLG光流算法对噪声具有更好的鲁棒性,可以较好地对图像进行光流估计。 Multi-target detection is an important research direction in computer vision.How to accurately detect targets in military,life,industry and other aspects have very important research significance.Aiming at the poor robustness to noise of traditional optical flow methods in target detection,in order to improve the robustness of the algorithm against noise,the CLG optical flow method is combined with the idea of multi-scale.The main idea of multi-scale is to build an image pyramid,calculate the optical flow vector from coarse to fine,and change the square of L2 norm to L1 norm.Experimental results show that the improved multi-scale CLG optical flow algorithm has better overall performance than the original CLG optical flow algorithm,indicating that the multi-scale CLG optical flow algorithm has better robustness to noise,and can better estimate the optical flow of images.
作者 任朝宇 赵冬娥 张斌 杨学峰 褚文博 REN Chao-yu;ZHAO Dong-e;ZHANG Bin;YANG Xue-feng;CHU Wen-bo(School of Information and Communication Engineering,North University of China,Taiyuan 030051,China)
出处 《计算机与现代化》 2022年第4期33-37,共5页 Computer and Modernization
基金 中央军委装备发展部装备预先研究项目(6140415030418) 山西省应用基础面上青年基金资助项目(201901D211251)。
关键词 多目标检测 CLG光流法 L1范数 多尺度 图像金字塔 multi-object detection CLG optical flow method L1 norm multi-scale image pyramid
  • 相关文献

参考文献16

二级参考文献111

  • 1张晓燕,赵荣椿,聂烜.基于内容视频分析的发展研究[J].计算机应用研究,2005,22(4):12-14. 被引量:5
  • 2程建,杨杰.一种基于均值移位的红外目标跟踪新方法[J].红外与毫米波学报,2005,24(3):231-235. 被引量:42
  • 3胡社教,葛西旺,陈宗海.基于角点特征的KLT跟踪全景图像拼接算法[J].系统仿真学报,2007,19(8):1742-1744. 被引量:17
  • 4HARITAOGLU I, HARWOOD DAVID, DAVIS L S. Real-time surveillance of people and their acticities[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8).
  • 5Meier T, Ngun K N. Video Segmentation for Content-Based Coding[J]. IEEE Trans. on Circuit s and Systems for Video Technology, 1999,9(8) : 1190 - 1203.
  • 6BARRON J, FLEET D, BEACHEMIN S. Performance of optical flow techniques[J]. International Journal of computer Vision, 1994,12( 1 ) : 42 - 47.
  • 7Surendra Gupte, et al. Detection and Classification of Vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2002(3):37-40.
  • 8Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences[ C]//Proceedings the Fourth Asian Conference on Computer Vision. Taiwan: [ sn ], 2000: 961 -964.
  • 9Davis J W, Bobiek A F. Representation and recognition of human movement using temporal templates [ C ]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1997:928 - 934.
  • 10Bradskil G R, Davis J W. Motion segmentation and pose recognition with motion history gradients [ J ]. Machine Vision and Applications,2002,13 (7) : 174 - 184.

共引文献245

同被引文献25

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部