期刊文献+

锂离子电池中石墨烯导电剂分散方法的研究进展 被引量:3

Research Progress in the Dispersion of Graphene Conductive Agents in Lithium-Ion Batteries
下载PDF
导出
摘要 石墨烯具有柔性、二维、超薄的结构特性,兼具电导率高、导热性好、力学性能强及化学稳定性良好等物理化学性质,是一种极具潜力的锂离子电池导电剂,石墨烯难以分散的问题是制约其在锂离子电池中广泛应用的重要原因。结合石墨烯的结构特征、衍生物种类及制备方法,从提升石墨烯的浸润性、协同分散以及防止二次团聚等方面,综述了石墨烯导电剂的分散方法,包括化学改性法、原位还原法、复合导电剂法、引入分散剂法以及其它方法,并对未来石墨烯导电剂的应用趋势及研究方向进行了展望。 Graphene has flexible, two-dimensional, ultra-thin structure characteristics, and physical and chemical properties such as high electrical conductivity, good thermal conductivity, strong mechanical properties and good chemical stability, which make it a promising conductive agent for lithium-ion batteries. The dispersion of graphene is the main factor restricting its wide application in lithium-ion batteries. In this paper, based on the structural characteristics, derivative types and preparation methods of graphene, the dispersion methods of graphene conductive agents are reviewed from the aspects of improving the wettability, synergistic dispersion and preventing secondary agglomeration of graphene, including chemical modification method, in-situ reduction method, composite conductive additive method, adding dispersant method and other methods. Finally, the application trend and research direction of graphene conductive agent in the future are prospected.
作者 文芳 彭小坡 李爽 郭华超 黄国家 WEN Fang;PENG Xiaopo;LI Shuang;GUO Huachao;HUANG Guojia(National Quality Supervision and Inspection Center of Graphene Product,Guangzhou Special Pressure Equipment Inspection and Research Institute,Guangzhou 510663,China;Guangzhou Customs District Technology Center,Guangzhou 510623,China)
出处 《中国材料进展》 CAS CSCD 北大核心 2022年第3期215-221,共7页 Materials China
基金 广州市市场监督管理项目(2019kj11)。
关键词 锂离子电池 石墨烯 导电剂 分散方法 导电网络 离子传输 lithium-ion battery graphene conductive additive dispersion method conductive network ion transmission
  • 相关文献

参考文献15

二级参考文献244

  • 1胡静,李兴建,张峰,孙道兴,张宜恒.加压密闭氧化石墨烯/水性聚氨酯纳米复合材料的制备及阻燃性能[J].高分子材料科学与工程,2015,31(3):163-168. 被引量:8
  • 2王国平,张庆堂,瞿美臻,于作龙.纳米级碳导电剂的种类对LiCoO_2电化学性能的影响[J].应用化学,2006,23(12):1385-1390. 被引量:30
  • 3Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 1476.
  • 4Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379.
  • 5Wu, Z. S.; Zhou, G. M.; ~in, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Nano Energy 2012, 1,107.
  • 6Singh, V.; Joung, D.; Zhai, L.; Das, S.; Khondaker, S. 1.; Seal, S. Prog. Mater. Sci. 2011, 56, 1178.
  • 7Xu, C. H.; Xu, B. H.; Gu, Y.; Xiong, Z. G.; Sun, J.; Zhao, X. S. Energy Environ. Sci. 2013, 6, 1388..
  • 8Lian, P. C.; Zhu, X. F.; Liang, S. Z.; Li, Z.; Yang, W. S.; Wang, H. H. Electrochim. Acta 2010, 55, 3909.
  • 9Shao, Y. Y.; Wang, J.; Engelhard, M.; Wang, C. M.; Lin, Y. H. J. Mater. Chem. 2010, 20, 743.
  • 10Wang, D. W.; Sun, C. H.; Zhou, G. M.; Li, F.; Wen, L.; Donose, B. C.; Lu, G. Q.; Cbeng, H. M.; Gentle, I. R. J. Mater. Chem. A 2013, 1, 3607.

共引文献234

同被引文献18

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部