摘要
为解决真空管道磁浮系统气动热问题,研究管道内气动热分布特性至关重要。以某高速磁浮列车为研究对象,基于Sutherland黏性公式及SST k-ω湍流模型,数值仿真了三维可压缩亚声速真空管道磁浮系统的气动特性及气动热效应,考虑的阻塞比范围为0.1~0.4、列车运行速度为600~1 000 km/h,研究了列车表面温度分布、列车尾部温度分布及管道激波的传播规律。研究结果表明:不同工况下头车与中间车表面温度变化呈缓慢下降趋势,由于尾部激波产生而造成尾车表面温度上升明显,且升高幅值随速度与阻塞比增大而增加。在壅塞状态下,尾车鼻尖处最高温度与阻塞比及速度基本呈线性关系。尾车流线型顶部与悬浮间隙处均有激波产生,管道内激波具有典型的三维特性和周期性,在轨道与管道表面之间反射的激波簇形成尾部低温与列车后方高低温交替特性。
The aerodynamic thermal effect is important for the design of evacuated tube maglev system.Based on Sutherland viscosity equation and SST k-ω turbulence model, the aerodynamic characteristics and aerodynamic thermal effect of three-dimensional compressible subsonic evacuated tube maglev system are numerically simulated. The blockage ratio ranges from 0.1 to 0.4 and the train running speed ranges from 600 km/h to 1 000 km/h. The results show that the variation of the surface temperature of the head car and the middle car is similar under different conditions. The surface temperature of the tail car increases obviously due to the generation of rear shock waves, and the amplitude increases with the increment of speed and blockage ratio.Under the condition of choke, the maximum temperature at nose of the tail car is basically linear relationship with the blockage ratio and speed. Shock waves are generated at the streamline of the tail car and the suspension gap. The shock wave in the tube has typical three-dimensional characteristics and periodicity. The shock wave cluster reflected between the track and the tube forms the characteristics of low temperature at the tail and alternating temperature behind the train.
作者
宋嘉源
李田
张晓涵
张继业
张卫华
SONG Jiayuan;LI Tian;ZHANG Xiaohan;ZHANG Jiye;ZHANG Weihua(State Key Laboratory of Traction Power,Southwest Jiaotong University,Chengdu 610031,China)
出处
《空气动力学学报》
CSCD
北大核心
2022年第2期115-121,I0002,共8页
Acta Aerodynamica Sinica
基金
四川省科技计划(2019YJ0227)
中国博士后科学基金(2019M663550)。
关键词
真空管道列车
阻塞比
速度
气动热效应
激波
evacuated tube train
blockage ratio
speed
aerodynamic thermal effect
shock wave