期刊文献+

融合颜色和纹理的多特征匹配算法 被引量:6

Multi feature matching algorithm integrating color and texture
原文传递
导出
摘要 传统SURF算法在对彩色图像匹配时仅基于灰度图像提取单一特征构建特征描述,在特征相似区域易导致误匹配,为提升图像配准精度,提出了一种多特征融合匹配算法。首先利用SURF算法进行特征点检测并构建特征描述符;其次,将彩色图像转换到归一化RG颜色空间,提取特征点邻域内的局部差值纹理信息,叠加到SURF描述符构成改进多特征描述符;计算特征点Hessian矩阵的迹,利用迹的正负对特征点进行分类,并采用最近邻比值法分别对分类的特征点进行对误匹配点进行粗剔除,最后利用改进的RANSAC算法对粗匹配点集进一步优化,计算最佳变换矩阵。实验结果表明,该算法在多种复杂变换下的图像匹配中均能获取较高的匹配精度,与传统算法比较,该算法的平均匹配精度提升了约7%,具有良好的稳定性。 In the process of color image matching,the traditional surf algorithm only extracts a single feature based on the gray image to construct the feature description,which is easy to lead to false matching in the feature similar area.In order to improve the accuracy of image registration,a multi feature fusion matching algorithm is proposed.Firstly,surf algorithm is used to detect feature points and construct feature descriptors;Secondly,the color image is transformed into normalized RG color space,the local difference texture information in the neighborhood of feature points is extracted and superimposed on surf descriptor to form an improved multi feature descriptor;Calculate the trace of the Hessian matrix of the feature points,classify the feature points by using the positive and negative of the trace,and roughly eliminate the wrong matching points by using the nearest neighbor ratio method.Finally,further optimize the rough matching point set by using the improved RANSAC algorithm to calculate the best transformation matrix.Experimental results show that the algorithm can obtain high matching accuracy in image matching under various complex transformations.Compared with the traditional algorithm,the average matching accuracy of the algorithm is improved by about 7%and has good stability.
作者 何显辉 王凯 张平 孙林 HE Xianhui;WANG Kai;ZHANG Ping;SUN Lin(Shandong University of Science and Technology,College of Geodesy and Geomatics,Qingdao 266590,China)
出处 《激光杂志》 CAS 北大核心 2022年第3期87-91,共5页 Laser Journal
基金 国家自然科学基金(No.41771408) 山东省自然科学基金(No.ZR2017MD001)。
关键词 SURF 归一化RG颜色空间 纹理 RANSAC SURF normalized RG color space texture RANSAC
  • 相关文献

参考文献11

二级参考文献99

  • 1罗久飞,邱广,张毅,冯松,韩冷.基于自适应双阈值的SURF双目视觉匹配算法研究[J].仪器仪表学报,2020,41(3):240-247. 被引量:42
  • 2董明利,王振华,祝连庆,孙雨南,吕乃光.基于RANSAC算法的立体视觉图像匹配方法[J].北京工业大学学报,2009,35(4):452-457. 被引量:10
  • 3石雅笋.改进的SURF图像配准算法研究[D].成都:电子科技大学,2008.
  • 4Zitova B, Flusser J. Image registration methods: a survey[J]. Image and vision computing, 2003, 21(11): 977-1000.
  • 5Brown L G. A survey of image registration techniques[J]. ACM computing surveys, 1992, 24(4): 325-376.
  • 6Lowe D G. Object recognition from local scale-invariant features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. IEEE, 1999, 2: 1150-1157.
  • 7Bay H, Tuytelaars T, Van Gool L. Surf: speeded up robust features[M]//Computer Vision-ECCV 2006. Berlin Heidelberg: Springer, 2006: 404-417.
  • 8Geusebroek J M, Van den Boomgaard R, Smeulders A W M, et al. Color invariance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(12): 1338-1350.
  • 9Kubelka P, Munk F, Kubelka P. Ein beitrag ztlr optik der farbanstriche[J]. Z. Teeh. Physik, 193l, 12: 593-601.
  • 10Abdel-Hakim A E, Farag A A. CSIFT: a SIFT descriptor with color invariant characteristics[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC, USA: IEEE, 2006, 2: 1978-1983.

共引文献119

同被引文献44

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部