期刊文献+

MIKU:融合知识图谱的用户多层兴趣模型 被引量:1

MIKU:Multi-layer User Interest Model Based on Knowledge Graph
下载PDF
导出
摘要 现有的推荐算法仅依靠历史行为无法挖掘到用户的深层兴趣,且受到用户冷启动问题的制约,针对上述问题提出融合知识图谱的用户多层兴趣模型(MIKU).该模型首先以用户的历史交互项目为知识图谱的头实体构建用户浅层兴趣,结合知识图谱中关系路径链接到历史项目的相关实体挖掘用户深层兴趣;其次考虑到用户兴趣的多样性,针对不同层次的兴趣分别采用自适应加权机制,学习用户对每个历史行为以及各个深层兴趣点的关注度.该模型在细粒度刻画物品特征的同时,利用知识图谱的结构信息为用户的推荐结果提供了一定的可解释性,并且结合了用户的属性特征有效解决了冷启动问题.通过在公开的MovieLens-1M数据集上进行验证,结果表明MIKU模型同CKE、RippleNet等基准模型相比,在推荐结果的准确率上提高了1.93%~5.59%、召回率上提升了2.95%~4.7%. Existing recommendation algorithms cannot dig out the implicit interest of users when only relying on historical behavior.At the same time,it will be restricted by user′s cold start problems.To solve these problems,this paper proposes a multi-layer user interest model based on knowledge graph(MIKU).Firstly,this model takes the user′s historical interactive items as the head entity of the knowledge graph to construct direct interest,and uses the relational path in the knowledge graph to link to the related entities of the historical item to construct deep interests.Secondly,considering the diversity of user interests we use adaptive weighting mechanisms for different levels of interest in order that learn the user′s preference for each historical behavior and calculate the user′s attention to deep-level points of interest.The algorithm describes the characteristics of items in a fine-grained manner,and uses the structural information of the knowledge graph to provide a certain interpretability for the user′s recommendation results.Mean-while,it combines the user′s attribute characteristics to solve the cold start problem effectively.Through extensive experiments on a public MovieLens-1M dataset,we demonstrate that compared with several state-of-the-art baselines,such as CKE and RippleNet,the MIKU model has an improvement of1.93%~5.59%in the accuracy,and the recall rate has increased by2.95%~4.7%.
作者 段文菁 谢珺 续欣莹 岳晓冬 刘笑笑 DUAN Wen-jing;XIE Jun;XU Xin-ying;YUE Xiao-dong;LIU Xiao-xiao(College of Information and Computer,Taiyuan University of Technology,Jinzhong 030600,China;College of Electrical and Power Engineering,Taiyuan University of Technology,Taiyuan 030000,China;School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2022年第5期1006-1012,共7页 Journal of Chinese Computer Systems
基金 山西省应用基础研究项目(201801D221190,201801D121144)资助。
关键词 知识图谱 用户属性 深层兴趣 自适应权重 knowledge graph user attributes deep interest adaptive weigh
  • 相关文献

参考文献8

二级参考文献142

  • 1韦素云,肖静静,业宁.基于联合聚类平滑的协同过滤算法[J].计算机研究与发展,2013,50(S2):163-169. 被引量:12
  • 2秦国,杜小勇.基于用户层次信息的协同推荐算法[J].计算机科学,2004,31(10):138-140. 被引量:15
  • 3Herlocker J L,Konstan J A, Borchers A, et al. An Algorithmic Framework for Performing Collaborative Filtering [ C]// SIGIR 99:Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and Development in Information Re- trieval. 1999 : 230-237.
  • 4Resnick P, Iacovou N, Suchak M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews[C] // Pro- ceedings of the 1994 ACM Conference on Computer Supported Cooperative Work. 1994:175-186.
  • 5Adomavieius G, Tuzhilin A. Towards the Next Generation of Recommender Systems: a Survey of the State-of-the-art and Possible Extensions [J]. IEEE Trans on Knowledge and Data Engineering, 2005,17 (6) : 734-749.
  • 6Sarwar B, Karypis G, Konstan J, et al. Item-Based Collaborative Filtering Recommendation Algorithms[C] //Proceedings of the 10th International World Wide Web Conference. New York, 2001 : 285-295.
  • 7Breese J, Hecherman D, Kadie C. Empirical Analysis of Predic- tive Algorithms for Collaborative Filtering[C]//Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI 98). 1998:43-52.
  • 8Wang J, Vries A, Reinders M. Unifying User-based and Item- based Collaborative Filtering Approaches by Similarity Fusion [C]//SIGIR 06: Proceedings of the 29th Annual International ACM SIGIR Conference on Research and Development in Infor- mation Retrieval. 2006 :501-508.
  • 9Shardanand U, Maes P. Social Information Filtering: Algorithms for Automating 'Word of Mouth' [C] // Proceeding of the Con- ference on Human Factors in Computing Systems. 1995:210-217.
  • 10Miller B N, Albert I, Lain S K, et al. MovieLens Unplugged.. Ex- periences with an Occasionally Connected Recommender System [C]// IUI 03: Proceedings of the 8th International Conference on Intelligent User Interfaces New York, 2003:263-266.

共引文献931

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部