摘要
重力场适配区选取算法是水下重力定位系统的关键技术之一,直接影响重力匹配算法的定位精度和匹配率,为提高适配区选取算法的准确性,提出一种基于分割嵌套三角剖分的重力场适配区选取算法。首先利用墨卡托投影和重力异常空间校正,将传统重力场栅格信息变换为三维高程信息;再利用分割嵌套的思想,不断从重力场最小环形域中分割出最优三角形,从而形成重力场三角网络。之后,对网络中每一个小三角形,选取了坡度、坡向、起伏度和粗糙度作为重力场局部几何特征。最后,采用k-means聚类算法,将重力场分为强适配区、弱适配区和非适配区。仿真对比试验结果表明,在提出的适配区选取算法所选择的强适配区内,重力匹配定位精度与重力场背景图格网分辨率相当,表明利用分割嵌套三角剖分来选取重力场适配区的可行性。
The selection algorithm of gravity field adaptation area is one of the key technologies of underwater gravity positioning system,which directly affects the positioning accuracy and matching rate of gravity matching algorithm.A gravity field adaptation region selection algorithm based on segmented nested triangulation is proposed.Firstly,the traditional grid information of gravity field is transformed into three-dimensional elevation information by using Mercator projection and gravity anomaly spatial correction.Then,using the idea of segmentation and nesting,the optimal triangle is continuously segmented from the minimum annular domain of gravity field,so as to form the triangular network of gravity field.For each small triangle in the network,the slope,aspect,fluctuation and roughness are selected as the local geometric characteristics of the gravity field,and the gravity field is divided into strong fit region,weak fit region and non-fit region by k-means clustering algorithm.The experimental results of adaptability evaluation show that in the strong adaptation area selected by the proposed adaptation area selection algorithm,the gravity matching positioning accuracy is equivalent to the grid resolution of the gravity field background map,indicating the feasibility of using segmented nested triangulation to select the gravity field adaptation area.
作者
王宇
肖烜
刘绩宁
邓志红
王博
WANG Yu;XIAO Xuan;LIU Jining;DENG Zhihong;WANG Bo(Beijing Institute of Technology,Beijing 100089,China)
出处
《中国惯性技术学报》
EI
CSCD
北大核心
2022年第1期51-57,共7页
Journal of Chinese Inertial Technology
基金
“复杂系统智能控制与决策”国家重点实验室研究基金项目(6142218200309)。
关键词
重力匹配定位
适配区选取
计算几何
嵌套环形域
三角剖分
gravity matching positioning
matching area selection
computational geometry
nesting ring domain
triangulation