期刊文献+

Unconditionally Secure Oblivious Polynomial Evaluation:A Survey and New Results 被引量:1

原文传递
导出
摘要 Oblivious polynomial evaluation(OPE)is a two-party protocol that allows a receiver,R to learn an evaluation f(α),of a sender,S's polynomial(f(x)),whilst keeping both a and f(x)private.This protocol has attracted a lot of attention recently,as it has wide ranging applications in the field of cryptography.In this article we review some of these applications and,additionally,take an in-depth look at the special case of information theoretic OPE.Specifically,we provide a current and critical review of the existing information theoretic OPE protocols in the literature.We divide these protocols into two distinct cases(three-party and distributed OPE)allowing for the easy distinction and classification of future information theoretic OPE protocols.In addition to this work,we also develop several modifications and extensions to existing schemes,resulting in increased security,flexibility and efficiency.Lastly,we also identify a security flaw in a previously published OPE scheme.
出处 《Journal of Computer Science & Technology》 SCIE EI CSCD 2022年第2期443-458,共16页 计算机科学技术学报(英文版)
  • 相关文献

参考文献1

二级参考文献21

  • 1Canetti R. Studies in multi-party computation and applications [Dissertation].ftp://theory.lcs.mit.edu/pub/ tcryptol/B03/thesis.ps.Z
  • 2Canetti R. Universally composable security: A new paradigm for cryptographic protocols. http://eprint.iacr.org/2000/067
  • 3Canetti R. Security and composition of multi-party cryptographic protocols. Journal of Cryptology, 2000,13(1): 143-202.
  • 4Canetti R, Feige U, Goldreich O, Naor M. Adaptively secure multi-party computation. In Proc. 28th ACM Symp. Theory of Computing, Philadelphia, Pennsylvania, 1996, pp.639-648.
  • 5Canetti R, Damgard I, Dziembowski S, Ishai Y, Malkin T. On adaptive vs. non-adaptive security of multiparty protocols. Advance in Cryptology-EUROCRYPT 2001,Birgit Pfitzmann (ed.), LNCS 2045, pp.262-279.
  • 6Hirt M, Maurer U. Player simulation and general adversary structures in perfect multiparty computation.Journal of Cryptology, 2000, 13(1): 31-60.
  • 7Hirt M, Maurer U. Robustness for free in unconditional multi-party computation. Advances in CryptologyCRYPTO'01, Springer-Verlag, 2001, LNCS 2139,pp.101-118.
  • 8Goldreich O. Secure multi-party computation (working draft), http://www.wisdom.weizmann.ac.il.
  • 9Cramer R, Damgard I. Multiparty computation, an introduction, http://www.daimi.au.dk/-ivan/CPT.html.
  • 10Fitzi M, Gisin N, Maure U et al. Unconditional Byzantine agreement and multi-party computation secure against dishonest minorities from sc.ratch. In Proceedings of Eurocrypt'02, Springer-Verlag, 2002, LNCS 2332, pp.482-501.

共引文献1

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部