期刊文献+

RCV-based error density estimation in the ultrahigh dimensional additive model 被引量:1

原文传递
导出
摘要 In this paper,we mainly study how to estimate the error density in the ultrahigh dimensional sparse additive model,where the number of variables is larger than the sample size.First,a smoothing method based on B-splines is applied to the estimation of regression functions.Second,an improved two-stage refitted crossvalidation(RCV)procedure by random splitting technique is used to obtain the residuals of the model,and then the residual-based kernel method is applied to estimate the error density function.Under suitable sparse conditions,the large sample properties of the estimator,including the weak and strong consistency,as well as normality and the law of the iterated logarithm,are obtained.Especially,the relationship between the sparsity and the convergence rate of the kernel density estimator is given.The methodology is illustrated by simulations and a real data example,which suggests that the proposed method performs well.
出处 《Science China Mathematics》 SCIE CSCD 2022年第5期1003-1028,共26页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China (Grant Nos. 11971324 and 11471223) Interdisciplinary Construction of Bioinformatics and Statistics Academy for Multidisciplinary Studies, Capital Normal University
  • 相关文献

参考文献3

二级参考文献15

  • 1Anscombe, F.: Graphs in statistical analysis. Amer. Statist., 27, 17-21 (1973).
  • 2Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and it oracle properties. J. Amer.Statist. Assoc., 96, 1348-1360 (2001).
  • 3Fan, J., Lv, J.: Sure independence screening for ultrahigh dimensional feature space (with discussion). J.Royal Statist. Soc., Ser. B, 70, 849-911 (2008).
  • 4Fan, J., Samworth, R., Wu, Y.: Ultrahigh dimensional feature selection: beyond the linear model. J.Machine Learning Research, 10, 1829-1853 (2009).
  • 5Fan, J., Song, R.: Sure independence screening in generalized linear models with NP-dimensionality. Ann.Statist., 38, 3567-3604 (2010).
  • 6Hall, P., Li, K. C.: On almost linearity of low dimensional projection from high dimensional data. Ann.Statist., 21, 867-889 (1993).
  • 7Hall, P., Miller, H.: Using generalized correlation to effect variable selection in very high dimensional problems. J. Comput. Graphical Statist., 18, 533-550 (2009).
  • 8Li, G., Peng. H., Zhang, J., et al.: Robust rank correlation based screening. Ann. Statist., 40, 1846-1877(2012).
  • 9Li, R., Zhong, W., Zhu, L. P.: Feature screening via distance correlation learning. J. Amer. Statist. Assoc.,107, 1129-1139 (2012).
  • 10Segal, M. R., Dahlquist, K. D., Conklin, B. R.: Regression approach for microarray data analysis. J.Comput. Biology, 10, 961-980 (2003).

共引文献7

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部